Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (439)
  • Open Access

    ARTICLE

    Numerical Simulation of Droplets Interacting with a Microcolumnar Solid Structure

    Liang Yang*, Tianle Xi, Zhixing Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1585-1608, 2023, DOI:10.32604/fdmp.2023.024987 - 30 January 2023

    Abstract The VOF method is used to simulate the dynamics of a droplet interacting with a structure consisting of an array of microcolumns mounted on a flat surface. Such a specific configuration is intended to mimic the typical properties of lotus leaves, which typically display regularly arranged micron-scale papillary structures. After setting the initial velocity of the simulated droplet on the basis of practical considerations, an analysis is conducted about the effect of the characteristic size of the microstructure on the apparent contact angle. The pressure variation in the microstructure caves is also examined. The simulation More >

  • Open Access

    ARTICLE

    Simulation of Vertical Solar Power Plants with Different Turbine Blades

    Yuxing Yang, Peng Zhang*, Meng Lv

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1397-1409, 2023, DOI:10.32604/fdmp.2023.024916 - 30 January 2023

    Abstract The performances of turbine blades have a significant impact on the energy conversion efficiency of vertical solar power plants. In the present study, such a relationship is assessed by considering two kinds of airfoil blades, designed by using the Wilson theory. In particular, numerical simulations are conducted using the SST K − ω model and assuming a wind speed of 3–6 m/s and seven or eight blades. The two airfoils are the NACA63121 (with a larger chord length) and the AMES63212; It is shown that the torsion angle of the former is smaller, and its wind drag More > Graphic Abstract

    Simulation of Vertical Solar Power Plants with Different Turbine Blades

  • Open Access

    ARTICLE

    Numerical Simulation of 3D Flow Field and Flow-Induced Noise Characteristics in a T-Shaped Reducing Tee Junction

    Feiran Lv1, Min Wang2, Chuntian Zhe1, Chang Guo3, Ming Gao1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1463-1478, 2023, DOI:10.32604/fdmp.2023.024259 - 30 January 2023

    Abstract The so-called T-shaped reducing tees are typically used to divide, change and control (to a certain extent) the flow direction in pipe networks. In this study, the Ffowcs Williams–Hawkings (FW-H) equation and the Large Eddy Simulation (LES) methods are used to simulate the flow-induced noise related to T-shaped reducing tees under different inlet flow velocities and for different pipe diameter ratios. The results show that the maximum flow velocity, average flow velocity, and vorticity in the branch pipe increase gradually as the related diameter decreases. Strong vorticity and secondary flows are also observed in the More > Graphic Abstract

    Numerical Simulation of 3D Flow Field and Flow-Induced Noise Characteristics in a T-Shaped Reducing Tee Junction

  • Open Access

    ARTICLE

    Numerical Simulation Analysis of the Transformer Fire Extinguishing Process with a High-Pressure Water Mist System under Different Conditions

    Haowei Yao1,3,*, Youxin Li1,3, Kefeng Lv1,3, Dong Wang2,3, Jinguang Zhang4, Zhenyu Zhan2,3, Zhenyu Wang2,3, Huaitao Song1,3, Xiaoge Wei1,3, Hengjie Qin1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 733-747, 2023, DOI:10.32604/cmes.2023.022155 - 05 January 2023

    Abstract To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs, a 3D experimental model of a transformer is established in this work by employing Fire Dynamics Simulator (FDS) software. More specifically, by setting different parameters, the process of the high-pressure water mist fire extinguishing system with the presence of both diverse ambient temperatures and water mist sprinkler laying conditions is simulated. In addition, the fire extinguishing effect of the employed high-pressure water mist system with the implementation of different strategies is systematically analyzed. The extracted results… More > Graphic Abstract

    Numerical Simulation Analysis of the Transformer Fire Extinguishing Process with a High-Pressure Water Mist System under Different Conditions

  • Open Access

    ARTICLE

    Parallel Iterative FEM Solver with Initial Guess for Frequency Domain Electromagnetic Analysis

    Woochan Lee1, Woobin Park1, Jaeyoung Park2, Young-Joon Kim3, Moonseong Kim4,*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1585-1602, 2023, DOI:10.32604/iasc.2023.033112 - 05 January 2023

    Abstract The finite element method is a key player in computational electromagnetics for designing RF (Radio Frequency) components such as waveguides. The frequency-domain analysis is fundamental to identify the characteristics of the components. For the conventional frequency-domain electromagnetic analysis using FEM (Finite Element Method), the system matrix is complex-numbered as well as indefinite. The iterative solvers can be faster than the direct solver when the solver convergence is guaranteed and done in a few steps. However, such complex-numbered and indefinite systems are hard to exploit the merit of the iterative solver. It is also hard to… More >

  • Open Access

    ARTICLE

    Hopping-Aware Cluster Header Capability for Sensor Relocation in Mobile IoT Networks

    Moonseong Kim1, Jaeyoung Park2, Young-Joon Kim3, Woochan Lee4,*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1613-1625, 2023, DOI:10.32604/iasc.2023.033081 - 05 January 2023

    Abstract Mobile sensor nodes such as hopping sensors are of critical importance in data collection. However, the occurrence of sensing holes is unavoidable due to the energy limitation of the nodes. Thus, it is evident that the relocation of mobile sensors is the most desirable method to recover the sensing holes. The previous research conducted by the authors so far demonstrated the most realistic hopping sensor relocation scheme, which is suitable for the distributed environment. In previous studies, the cluster header plays an essential role in detecting the sensing hole and requesting the neighboring cluster to… More >

  • Open Access

    ARTICLE

    Simulation of Gas-Water Two-Phase Flow in Tight Gas Reservoirs Considering the Gas Slip Effect

    Mingjing Lu1,2,*, Zenglin Wang1,3, Aishan Li1, Liaoyuan Zhang1, Bintao Zheng1, Zilin Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1269-1281, 2023, DOI:10.32604/fdmp.2023.023188 - 30 November 2022

    Abstract A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated. The model can account for the gas slip effect, stress sensitivity, and high-speed non-Darcy factors. The related equations are solved in the framework of a finite element method. The results are validated against those obtained by using the commercial software CMG (Computer Modeling Group software for advanced recovery process simulation). It is shown that the proposed method is reliable. It can capture the fracture rejection characteristics of tight gas reservoirs better than the CMG. A sensitivity analysis of various control factors More >

  • Open Access

    ARTICLE

    Analysis of the Influence of the Blade Deformation on Wind Turbine Output Power in the Framework of a Bidirectional Fluid-Structure Interaction Model

    Ling Yuan1, Zhenggang Liu2,*, Li Li3, Ming Lin1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1129-1141, 2023, DOI:10.32604/fdmp.2023.023538 - 30 November 2022

    Abstract The blades of large-scale wind turbines can obviously deform during operation, and such a deformation can affect the wind turbine’s output power to a certain extent. In order to shed some light on this phenomenon, for which limited information is available in the literature, a bidirectional fluid-structure interaction (FSI) numerical model is employed in this work. In particular, a 5 MW large-scale wind turbine designed by the National Renewable Energy Laboratory (NREL) of the United States is considered as a testbed. The research results show that blades’ deformation can increase the wind turbine’s output power by More > Graphic Abstract

    Analysis of the Influence of the Blade Deformation on Wind Turbine Output Power in the Framework of a Bidirectional Fluid-Structure Interaction Model

  • Open Access

    ARTICLE

    Numerical Simulation of Aerodynamic Interaction Effects in Coaxial Compound Helicopters

    Maosheng Wang, Yanyang Wang, Yihua Cao*, Qiang Zhang

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1301-1315, 2023, DOI:10.32604/fdmp.2023.023435 - 30 November 2022

    Abstract The so-called coaxial compound helicopter features two rigid coaxial rotors, and possesses high-speed capabilities. Nevertheless, the small separation of the coaxial rotors causes severe aerodynamic interactions, which require careful analysis. In the present work, the aerodynamic interaction between the various helicopter components is investigated by means of a numerical method considering both hover and forward flight conditions. While a sliding mesh method is used to deal with the rotating coaxial rotors, the Reynolds-Averaged Navier-Stokes (RANS) equations are solved for the flow field. The Caradonna & Tung (CT) rotor and Harrington-2 coaxial rotor are considered to More >

  • Open Access

    ARTICLE

    Numerical Simulation of Dust Removal in the Cyclone Collector of a Straw Crusher Based on a Discrete Phase Model

    Zhuang Wu1,2, Chang Su1,2,*, Hua Xu1,2, Liu Wang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1143-1157, 2023, DOI:10.32604/fdmp.2022.022496 - 30 November 2022

    Abstract The cyclone dust collector is an important subsystem of straw crushers used in agriculture. In the present study, a new type of dust collector with involute morphology is proposed to obtain better dust removal efficiency with respect to that of classical tangential and spiral dust collectors. A discrete phase model (DPM) method is used in synergy with a turbulence model, and the SIMPLE algorithm to simulate the flow field inside the dust collector and the related particle dynamics. It is shown that the internal flow field features a primary swirl, a secondary swirl and blockage More > Graphic Abstract

    Numerical Simulation of Dust Removal in the Cyclone Collector of a Straw Crusher Based on a Discrete Phase Model

Displaying 121-130 on page 13 of 439. Per Page