Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (432)
  • Open Access

    ARTICLE

    ADVENTURE AutoGL: A Handy Graphics and GUI Library for Researchers and Developers of Numerical Simulations

    H. Kawai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.3, pp. 111-120, 2006, DOI:10.3970/cmes.2006.011.111

    Abstract ADVENTURE AutoGL (pronounced as ‘Ote- ga-lu’) is a graphics and GUI library, dedicated for simulation-based research and development. It is designed for the simulation users to develop their own data viewers and editors. Currently, the library is used among many researchers and simulation users, mainly in universities and national research centers. Its functionalities and supported platforms are explained. AutoGL applications of various kinds of simulation methods are demonstrated also. More >

  • Open Access

    ARTICLE

    Numerical Simulation of Dynamic Elasto Visco-plastic Fracture Using Moving Finite Element Method

    T. Fujimoto1 and T. Nishioka1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.2, pp. 91-102, 2006, DOI:10.3970/cmes.2006.011.091

    Abstract In the dynamic fracture of metallic material, some cracks propagate with the incidence of plastic deformation, and distinct plastic strain remains near the post-propagation area. In order to elucidate these dynamic nonlinear fracture processes, the moving finite element method is developed for nonlinear crack propagation. The T* integral is used as the parameter to estimate crack tip condition. First, the effect of material viscosity and crack propagation velocity have been discussed based on the numerical results for fracture under pure mode I high speed loading. Under mixed mode loading, numerical simulations for fracture path prediction More >

  • Open Access

    ARTICLE

    Numerical Simulation of Elastic Behaviour and Failure Processes in Heterogeneous Material

    Lingfei Gao1, Xiaoping Zheng1,2, Zhenhan Yao1

    CMC-Computers, Materials & Continua, Vol.3, No.1, pp. 25-36, 2006, DOI:10.3970/cmc.2007.003.025

    Abstract A general numerical approach is developed to model the elastic behaviours and failure processes of heterogeneous materials. The heterogeneous material body is assumed composed of a large number of convex polygon lattices with different phases. These phases are locally isotropic and elastic-brittle with the different lattices displaying variable material parameters and a Weibull-type statistical distribution. When the effective strain exceeds a local fracture criterion, the full lattice exhibits failure uniformly, and this is modelled by assuming a very small Young modulus value. An auto-select loading method is employed to model the failure process. The proposed More >

  • Open Access

    ARTICLE

    Numerical Simulations of Unstable Flow through a Spherical Bulge in a 90-degree Asymmetrical Bend

    J.M.M. Sousa1

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.2, pp. 211-220, 2005, DOI:10.3970/cmes.2005.009.211

    Abstract Time-dependent numerical simulations of the flow through a spherical bulge in a 90-degree asymmetrical bend have been performed for Reynolds numbers in the range 100-400. The present results have demonstrated that the flow reaches asymptotically steady, symmetrical solutions for Reynolds numbers up to 300, whereas a value of 400 for this parameter leads to unsteadiness. The computed flow behavior at this higher Reynolds number has shown to be characterized by an intermittent transition between small-amplitude, irregular oscillations and large-amplitude bursts occurring at a low frequency. In addition, the unsteady flow was asymmetrical and exhibited swirl More >

  • Open Access

    ARTICLE

    Time-Resolved Penetration of B4C Tiles by the APM2 Bullet

    Charles E. Anderson, Jr.1, Matthew S. Burkins2, James D. Walker1, William A. Gooch2

    CMES-Computer Modeling in Engineering & Sciences, Vol.8, No.2, pp. 91-104, 2005, DOI:10.3970/cmes.2005.008.091

    Abstract A modification of Wilkins computational ceramics model is used to simulate experiments of the impact of the APM2 bullet against boron carbide/aluminum targets. Flash radiography provides time-resolved penetration histories. The simulation results are compared to the experimental data; generally, agreement is very good, including capturing dwell and then the onset of penetration. Crater width and debris diameter are also reproduced by the simulations reasonably well. A critical discussion of deficiencies of this computational engineering model is provided. More >

  • Open Access

    ARTICLE

    Recent Advances in Numerical Simulation Technologies for Various Dynamic Fracture Phenomena

    Toshihisa Nishioka 1,

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.3, pp. 209-216, 2005, DOI:10.3970/cmes.2005.010.209

    Abstract Recent Advances in Numerical Simulation Technologies for Various Dynamic Fracture Phenomena are summarized. First, the basic concepts of fracture simulations are explained together with pertinent simulation results. Next, Examples of dynamic fracture simulations are presented. More >

  • Open Access

    ARTICLE

    Numerical Study of Low Frequency G-jitter Effect on Thermal Diffusion

    Y. Yan1, V. Shevtsova2, M. Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.4, pp. 315-328, 2005, DOI:10.3970/fdmp.2005.001.315

    Abstract Convection has a major impact on diffusion in fluid mixtures either on the Earth or in the microgravity condition. G-jitters, as the primary source that induces the vibrational convection in space laboratories, should be studied thoroughly in order to improve the diffusion-dominated fluid science experiments. In this paper we consider the effect of g-jitters on thermal diffusion. The mixture water-isopropanol (90:10 wt%) bounded in a cubic cell is simulated with a lateral heating and various vibration conditions. The fluid flow, concentration and temperature distributions are thoroughly analyzed for different g-jitter scenarios. It is shown that… More >

  • Open Access

    ARTICLE

    Numerical Simulation of CZ Crystal Growth of Oxide

    T. Tsukada1, M. Kobayashi2, C. J. Jing3, N. Imaishi4

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.1, pp. 45-62, 2005, DOI:10.3970/fdmp.2005.001.045

    Abstract In this paper, our recent numerical studies on the Czochralski (CZ) crystal growth of oxide are surveyed. In the first part of the analysis, a "global" heat transfer model for an inductively heated CZ furnace is introduced and depicted in detail. It is emphasized that accounting for the internal radiation within the crystal and/or melt is of crucial importance since they are often semitransparent to infrared radiation. Results coming from such a "global" approach suggest that the melt/crystal interface shape is strongly affected by the optical properties of the crystal, of the melt and by More >

  • Open Access

    ARTICLE

    Numerical modeling of shape-memory alloys in orthodontics

    F. Auricchio1, L. Petrini2, R. Pietrabissa3, E. Sacco4

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.3&4, pp. 365-380, 2003, DOI:10.3970/cmes.2003.004.365

    Abstract Since 80’s many devices were developed to exploit the unique blend of mechanical and biocompatibility properties of shape memory alloys in orthodontic applications. It results in a high clinical effectiveness, but also in a spreading of technical knowledge on the properties of the single appliances. The goal of the present contribution is to contrast this sense of bewilderness and to prepare the basis for a simulationtool able to support the orthodontist choice. In particular a finite-element beam with a one-dimensional constitutive law, able to describe the SMA super elasticity and shape memory effect, is presented: More >

  • Open Access

    ARTICLE

    Numerical Simulation of Cohesive Fracture by the Virtual-Internal-Bond Model

    P. Zhang1, P. Klein2, Y. Huang1,3, H. Gao4, P. D. Wu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.2, pp. 263-278, 2002, DOI:10.3970/cmes.2002.003.263

    Abstract The recently developed virtual-internal-bond (VIB) model has incorporated a cohesive-type law into the constitutive law of solids such that fracture and failure of solids become a coherent part of the constitutive law and no separate fracture or failure criteria are needed. A numerical algorithm is developed in this study for the VIB model under static loadings. The model is applied to study three examples, namely the crack nucleation and propagation from stress concentration, kinking and subsequent propagation of a mode II crack, and the buckling-driven delamination of a thin film from a substrate. The results More >

Displaying 421-430 on page 43 of 432. Per Page