Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access

    ARTICLE

    Investigation on the Changing Characteristics of Flow-Induced Noise in a Centrifugal Pump

    Guanpeng Li1, Lihui Sun2, Zhaoyang Wang1, Chunguo An1, Chang Guo3,*, Shen Cheng3, Ming Gao2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.5, pp. 989-1001, 2021, DOI:10.32604/fdmp.2021.016507

    Abstract Centrifugal pumps are widely used in engineering for a variety of applications. A known drawback of these devices is the high-level noise generated during operations, which can affect their stability and adversely influence the entire working environment. By combining the Powell vortex sound theory, numerical simulations and experimental measurements, this research explores the trends of variation and the corresponding underlying mechanisms for the flow-induced noise at various locations and under different operating conditions. It is shown that the total sound source intensity (TSSI) and total sound pressure level (TSPL) in the impeller, in the region between the inlet to the… More >

  • Open Access

    ARTICLE

    A Novel Design of Octal-Valued Logic Full Adder Using Light Color State Model

    Ahmed Talal, Osama Abu-Elnasr*, Samir Elmougy

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3487-3503, 2021, DOI:10.32604/cmc.2021.015759

    Abstract Due to the demand of high computational speed for processing big data that requires complex data manipulations in a timely manner, the need for extending classical logic to construct new multi-valued optical models becomes a challenging and promising research area. This paper establishes a novel octal-valued logic design model with new optical gates construction based on the hypothesis of Light Color State Model to provide an efficient solution to the limitations of computational processing inherent in the electronics computing. We provide new mathematical definitions for both of the binary OR function and the PLUS operation in multi valued logic that… More >

  • Open Access

    ARTICLE

    Numerical Simulations of Hydromagnetic Mixed Convection Flow of Nanofluids inside a Triangular Cavity on the Basis of a Two-Component Nonhomogeneous Mathematical Model

    Khadija A. Al-Hassani1, M. S. Alam2, M. M. Rahman1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 1-20, 2021, DOI:10.32604/fdmp.2021.013497

    Abstract Nanofluids have enjoyed a widespread use in many technological applications due to their peculiar properties. Numerical simulations are presented about the unsteady behavior of mixed convection of Fe3O4-water, Fe3O4- kerosene, Fe3O4-ethylene glycol, and Fe3O4-engine oil nanofluids inside a lid-driven triangular cavity. In particular, a two-component non-homogeneous nanofluid model is used. The bottom wall of the enclosure is insulated, whereas the inclined wall is kept a constant (cold) temperature and various temperature laws are assumed for the vertical wall, namely: θ = 1(Case 1), θ = Y(1 – Y)(Case 2), and θ = sin(2πY)(Case 3). A tilted magnetic field of uniform… More >

  • Open Access

    ARTICLE

    Modelling the Effect of Self-Immunity and the Impacts of Asymptomatic and Symptomatic Individuals on COVID-19 Outbreak

    M. H. A. Biswas1,*, M. A. Islam1, S. Akter2, S. Mandal2, M. S. Khatun1, S. A. Samad1, A. K. Paul1, M. R. Khatun1

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.3, pp. 1033-1060, 2020, DOI:10.32604/cmes.2020.012792

    Abstract COVID-19 is one of the most highly infectious diseases ever emerged and caused by newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has already led the entire world to health and economic crisis. It has invaded the whole universe all most every way. The present study demonstrates with a nine mutually exclusive compartmental model on transmission dynamics of this pandemic disease (COVID-19), with special focus on the transmissibility of symptomatic and asymptomatic infection from susceptible individuals. Herein, the compartmental model has been investigated with mathematical analysis and computer simulations in order to understand the dynamics of COVID-19 transmission.… More >

  • Open Access

    ARTICLE

    RANS Simulation for the Maneuvering and Control of a Suboff Submarine Model

    Jinyu Ren, Dezhi Xu, Jing Xu*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 561-572, 2020, DOI:10.32604/fdmp.2020.09791

    Abstract Submarine maneuverability has been analyzed by means of computational fluid dynamics (CFD). This approach provides an alternative, accurate, and cost-effective method for simulating actual flow. The numerical results show that the numerical simulation of the viscous flow related to a moving submarine based on the RANS equation with a relevant turbulence model can not only provide rich flow field details such as flow separation, but also accurately predict its hydrodynamic performance. The present study indicates that CFD can be used to forecast the submarine’s maneuverability in the initial design stage. The present results will be used in the future as… More >

  • Open Access

    ARTICLE

    Numerical Simulations for Stochastic Computer Virus Propagation Model

    Muhammad Shoaib Arif1, *, Ali Raza1, Muhammad Rafiq2, Mairaj Bibi3, Javeria Nawaz Abbasi3, Amna Nazeer3, Umer Javed4

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 61-77, 2020, DOI:10.32604/cmc.2020.08595

    Abstract We are presenting the numerical simulations for the stochastic computer virus propagation model in this manuscript. We are comparing the solutions of stochastic and deterministic computer virus models. Outcomes of a threshold number R0 hold in stochastic computer virus model. If R0 < 1 then in such a condition virus controlled in the computer population while R0 > 1 shows virus rapidly spread in the computer population. Unfortunately, stochastic numerical techniques fail to cope with large step sizes of time. The suggested structure of the stochastic non-standard finite difference technique can never violate the dynamical properties. On this basis, we… More >

  • Open Access

    ARTICLE

    Numerical Simulations of the Ice Load of a Ship Navigating in Level Ice Using Peridynamics

    Yanzhuo Xue1, Renwei Liu1, Yang Liu1,*, Lingdong Zeng1, Duanfeng Han1

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.2, pp. 523-550, 2019, DOI:10.32604/cmes.2019.06951

    Abstract In this study, a numerical method was developed based on peridynamics to determine the ice loads for a ship navigating in level ice. Convergence analysis of threedimensional ice specimen with tensile and compression loading are carried out first. The effects of ice thickness, sailing speed, and ice properties on the mean ice loads were also investigated. It is observed that the ice fragments resulting from the icebreaking process will interact with one another as well as with the water and ship hull. The ice fragments may rotate, collide, or slide along the ship hull, and these ice fragments will eventually… More >

  • Open Access

    ABSTRACT

    Patient-Specific Computational Approach for Trans Catheter Aortic Valve Replacement (TAVR): Pre-Procedural Planning for Enhancing Performance and Clinical Outcomes

    Ram P. Ghosh1, Matteo Bianchi1, Gil Marom2, Oren M. Rotman1, Brandon Kovarovic1, Danny Bluestein1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 12-14, 2019, DOI:10.32604/mcb.2019.07379

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Numerical modeling of shape-memory alloys in orthodontics

    F. Auricchio1, L. Petrini2, R. Pietrabissa3, E. Sacco4

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.3&4, pp. 365-380, 2003, DOI:10.3970/cmes.2003.004.365

    Abstract Since 80’s many devices were developed to exploit the unique blend of mechanical and biocompatibility properties of shape memory alloys in orthodontic applications. It results in a high clinical effectiveness, but also in a spreading of technical knowledge on the properties of the single appliances. The goal of the present contribution is to contrast this sense of bewilderness and to prepare the basis for a simulationtool able to support the orthodontist choice. In particular a finite-element beam with a one-dimensional constitutive law, able to describe the SMA super elasticity and shape memory effect, is presented: it is shown how computer… More >

  • Open Access

    ABSTRACT

    Direct Numerical Simulations for Colloidal Dispersions

    Ryoichi Yamamoto

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.2, pp. 37-38, 2011, DOI:10.3970/icces.2011.018.037

    Abstract We developed a unique method for direct numerical simulations (DNS) of dense colloidal dispersions [3, 5]. This method, called the smoothed profile method (SPM), enables us to compute the time evolutions of colloidal particles, ions, and host fluids simultaneously by solving Newton, advection-diffusion, and Navier-Stokes equations so that the electro- hydrodynamic couplings can be fully taken into account. We have applied the SPM successfully for simulating dynamics of various particle dispersions, including colloids in liquid crystals [1, 2], electrophoresis of charged colloids [4, 5], particle diffusion in fluids [7, 8], dispersion rheology [9, 11], tumbling chain in shear flow [10],… More >

Displaying 11-20 on page 2 of 38. Per Page