Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (69)
  • Open Access

    ARTICLE

    Knockdown of Long Noncoding RNA CAT104 Inhibits the Proliferation, Migration, and Invasion of Human Osteosarcoma Cells by Regulating MicroRNA-381

    Bo Xia*, Lei Wang, Li Feng*, Baofang Tian*, Yuanjie Tan, Baoyin Du*

    Oncology Research, Vol.27, No.1, pp. 89-98, 2019, DOI:10.3727/096504018X15199511344806

    Abstract Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. This study aimed to explore the effects of long noncoding RNA CAT104 and microRNA-381 (miR-381) on osteosarcoma cell proliferation, migration, invasion, and apoptosis, as well as the underlying potential mechanism. We found that CAT104 was highly expressed in osteosarcoma MG63 and OS-732 cells. Knockdown of CAT104 significantly inhibited OS-732 cell proliferation, migration, and invasion, but promoted cell apoptosis. CAT104 regulated the expression of miR-381, and miR-381 participated in the effects of CAT104 on OS-732 cells. Zinc finger E-box-binding homeobox 1 (ZEB1) was More >

  • Open Access

    ARTICLE

    Knockdown of Urothelial Carcinoma-Associated 1 Suppressed Cell Growth and Migration Through Regulating miR-301a and CXCR4 in Osteosarcoma MHCC97 Cells

    Genglong Zhu*, Xialei Liu*, Yonghui Su, Fangen Kong, Xiaopeng Hong*, Zhidong Lin

    Oncology Research, Vol.27, No.1, pp. 55-64, 2019, DOI:10.3727/096504018X15201143705855

    Abstract Liver cancer is one of the most common malignancies in the world and a leading cause of cancer-related mortality. Accumulating evidence has highlighted the critical role of long noncoding RNAs (lncRNAs) in various cancers. The present study aimed to explore the role of lncRNA urothelial carcinoma-associated 1 (UCA1) in cell growth and migration in MHCC97 cells and its underlying mechanism. First, we assessed the expression of UCA1 in MHCC97 and three other cell lines by RT-qPCR. Then the expression of UCA1, miR-301a, and CXCR4 in MHCC97 cells was altered by transient transfection. The effects of… More >

  • Open Access

    ARTICLE

    Thrombospondin 1 Triggers Osteosarcoma Cell Metastasis and Tumor Angiogenesis

    Yue Kui Jian1, Huan Ye Zhu1, Xing Lin Wu, Bo Li

    Oncology Research, Vol.27, No.2, pp. 211-218, 2019, DOI:10.3727/096504018X15208993118389

    Abstract Osteosarcomas, especially those with metastatic or unresectable disease, have limited treatment options. The antitumor effects of pharmacologic inhibitors of angiogenesis in osteosarcomas are hampered in patients by the rapid development of tumor resistance, notably through increased invasiveness and accelerated metastasis. Here we demonstrated that thrombospondin 1 (TSP-1) is a potent inhibitor of the growth and metastasis of the osteosarcoma cell line MG-63. Moreover, we demonstrate that upregulation of TSP-1 facilitated expression of vasculostatin in MG-63 cells. In angiogenesis assays, overexpression of TSP-1 inhibited MG-63 cells and induced tube formation of human umbilical vein endothelial cells More >

  • Open Access

    ARTICLE

    miR-363-3p Inhibits Osteosarcoma Cell Proliferation and Invasion via Targeting SOX4

    Kejun Wang*1, Lin Yan*1, Fen Lu

    Oncology Research, Vol.27, No.2, pp. 157-163, 2019, DOI:10.3727/096504018X15190861873459

    Abstract miR-363-3p has been shown to suppress tumor growth and metastasis in various human cancers. However, the function of miR-363-3p in osteosarcoma (OS) has not been determined. In our study, we found that the expression of miR-363-3p was significantly downregulated in OS tissues compared with adjacent normal tissues. miR-363-3p expression was associated with the poor overall survival rate of OS patients. Moreover, we found that overexpression of miR-363-3p markedly inhibited the proliferation, migration, and invasion of U2OS and MG63 cells. Moreover, we found that SOX4 was a direct target of miR-363-3p in OS cells. Overexpression of More >

  • Open Access

    ARTICLE

    Exosomal miR-1228 From Cancer-Associated Fibroblasts Promotes Cell Migration and Invasion of Osteosarcoma by Directly Targeting SCAI

    Jian-Wei Wang, Xiao-Feng Wu, Xiao-Juan Gu, Xing-Hua Jiang

    Oncology Research, Vol.27, No.9, pp. 979-986, 2019, DOI:10.3727/096504018X15336368805108

    Abstract Cancer-associated fibroblasts (CAFs) play a predominant role in regulating tumor progression. Understanding how CAFs communicate with osteosarcoma is crucial for developing novel approaches for osteosarcoma therapy. Exosomes are able to transmit messages between cells. In this study, we demonstrated that CAFs transfer exosomes to osteosarcoma cells, which promotes osteosarcoma cell migration and invasion. Using a miRNA microarray analysis, we identified 13 miRNAs that are significantly increased in exosomes derived from cancer-associated fibroblasts (CAFs) and corresponding paracancer fibroblasts (PAFs). In vitro studies further validated that the levels of microRNA-1228 (miR-1228) were increased in CAFs, its secreted More >

  • Open Access

    ARTICLE

    MicroRNA-935 Inhibits Proliferation and Invasion of Osteosarcoma Cells by Directly Targeting High Mobility Group Box 1

    Zhiqiang Liu*1, Qiang Li*1, Xin Zhao, Bin Cui*, Libo Zhang*, Qiang Wang*

    Oncology Research, Vol.26, No.9, pp. 1439-1446, 2018, DOI:10.3727/096504018X15189093975640

    Abstract Numerous studies have suggested that microRNAs (miRNAs) are dysregulated in osteosarcoma (OS), implicating miRNAs in OS initiation and progression. Therefore, knowledge of aberrantly expressed miRNAs in OS may provide novel mechanistic insights into the tumorigenesis and tumor development of OS and facilitate therapeutic methods for patients with this aggressive bone neoplasm. In this study, data obtained from reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that miR-935 was significantly decreased in OS tissues and cell lines. Restoration expression of miR-935 obviously restricted proliferation and invasion of OS cells. In addition, high-mobility group box 1 (HMGB1)… More >

  • Open Access

    ARTICLE

    Long Noncoding RNA FEZF1-AS1 Promotes Osteosarcoma Progression by Regulating the miR-4443/NUPR1 Axis

    Chengwei Zhou1, Jianxiang Xu1, Jinti Lin, Renjin Lin, Kai Chen, Jianzhong Kong, Xiaolong Shui

    Oncology Research, Vol.26, No.9, pp. 1335-1343, 2018, DOI:10.3727/096504018X15188367859402

    Abstract Long noncoding RNA (lncRNA) FEZF1-AS1 was demonstrated to facilitate cell proliferation and migration in some cancers. However, the functions of FEZF1-AS1 and its molecular mechanism in osteosarcoma remain to be elucidated. In our study, we found that the expression of FEZF1-AS1 was upregulated in osteosarcoma samples and cell lines compared with normal tissues or cells. Besides, we showed that the expression levels of FEZF1-AS1 in osteosarcoma patients were positively correlated with tumor metastasis and TNM stage. Additionally, FEZF1-AS1 knockdown inhibited cell proliferation, migration, and invasion in U2OS and MG63 cells, while upregulation had the opposite More >

  • Open Access

    ARTICLE

    MicroRNA-103 Promotes Proliferation and Inhibits Apoptosis in Spinal Osteosarcoma Cells by Targeting p57

    Xuesong Wang*, Yong Lin, Lei Peng, Ruifu Sun*, Xiaojin Gong*, Jinlong Du*, Xiugong Zhang*

    Oncology Research, Vol.26, No.6, pp. 933-940, 2018, DOI:10.3727/096504017X15144741233346

    Abstract Osteosarcoma is one of the most aggressive malignancies with poor prognosis rates. Many studies have demonstrated that miRNAs were involved in osteosarcoma, but the role of miR-103a in osteosarcoma remains elusive. In this study, we detected the expression levels of miR-103 in osteosarcoma and non-osteosarcoma tissues and cell lines. The binding effect of miR-103 on p57 was detected by luciferase reporter assay. After altering expressions of miR-103 or p57, viability, migration, invasion, and apoptosis of MG63 cells and expressions of proteins related with the JNK/STAT and mTOR pathways were all detected. We found the higher More >

  • Open Access

    ARTICLE

    Long Noncoding RNA XIST Promotes Osteosarcoma Progression by Targeting Ras-Related Protein RAP2B via miR-320b

    Gong-Yi Lv, Jun Miao, Xiao-Lin Zhang

    Oncology Research, Vol.26, No.6, pp. 837-846, 2018, DOI:10.3727/096504017X14920318811721

    Abstract Abnormal expression of long noncoding RNAs (lncRNAs) often contributes to the unrestricted growth and invasion of cancer cells. lncRNA X-inactive specific transcript (XIST) expression is upregulated in several cancers; however, its underlying mechanism in osteosarcoma (OS) has not been elucidated. In the present study, we found that XIST expression was significantly increased in OS tissues and cell lines by LncRNA Profiler and qRT-PCR. The effects of XIST and miR-320b on OS cell proliferation and invasion were studied by MTT and Transwell invasion assays. The competing relationship between XIST and miR-320b was confirmed by luciferase reporter More >

  • Open Access

    ARTICLE

    MicroRNA-152 Suppresses Human Osteosarcoma Cell Proliferation and Invasion by Targeting E2F Transcription Factor 3

    Chao Ma, Jinfeng Han, Dong Dong, Nanya Wang

    Oncology Research, Vol.26, No.5, pp. 765-773, 2018, DOI:10.3727/096504017X15021536183535

    Abstract MicroRNA-152 (miR-152) expression has been reported to be downregulated in osteosarcoma (OS). However, the role of miR-152 in OS is not well documented. In the present study, we aimed to explore the function and underlying mechanism of miR-152 in OS. We found that miR-152 was underexpressed in OS tissues and cell lines. Decreased miR-152 was inversely correlated with lymph node metastasis and advanced clinical stage. Overexpression of miR-152 significantly inhibited cell proliferation, colony formation, migration, and invasion of OS cells. Bioinformatics analyses showed that miR-152 directly targeted E2F transcription factor 3 (E2F3), as further confirmed More >

Displaying 31-40 on page 4 of 69. Per Page