Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (69)
  • Open Access

    ARTICLE

    MicroRNA-107 Promotes Proliferation, Migration, and Invasion of Osteosarcoma Cells by Targeting Tropomyosin 1

    Rui Jiang*, Chao Zhang, Guangyao Liu*, Rui Gu*, Han Wu*

    Oncology Research, Vol.25, No.8, pp. 1409-1419, 2017, DOI:10.3727/096504017X14882829077237

    Abstract Osteosarcoma is the most common primary bone malignancy manifested predominantly in children and young adults. Studies indicate that miR-107 is involved in the pathogenesis of osteosarcoma and that tropomyosin 1 (TPM1) acts as a tumor suppressor in many types of cancer. In this study, we analyzed the effect of miR-107 on human osteosarcoma cells and investigated the mechanism in which TPM1 is involved. miR-107 expression in human osteosarcoma tissues and cells was analyzed in quantitative real-time PCR (qRT-PCR). Human osteosarcoma (U2OS) cells were transfected with miR-107 mimic, inhibitor, or scramble controls to evaluate the effect… More >

  • Open Access

    ARTICLE

    MicroRNA-520b Suppresses Proliferation, Migration, and Invasion of Spinal Osteosarcoma Cells via Downregulation of Frizzled-8

    Jin Wang*, Wenquan Pang*, Zhenbai Zuo*, Wenyan Zhang*, Weidong He

    Oncology Research, Vol.25, No.8, pp. 1297-1304, 2017, DOI:10.3727/096504017X14873430389189

    Abstract Spinal osteosarcoma (OS) is a malignant tumor that has a poor outcome. MicroRNA-520b (miR-520b) acts as a cancer suppressor in various types of cancer. Because of the limited amount of literature on OS, we aimed to identify the role of miR-520b in OS. The miR-520b level in clinical spinal OS tissues and adjacent nontumor tissues as well as in cell lines was assessed. The effect of miR-520b on cell proliferation, migration, invasion, and frizzled-8 (FZD8) degradation were all evaluated. Alterations of key proteins involved in the Wnt/b-catenin pathway were assessed by Western blot analysis. In… More >

  • Open Access

    ARTICLE

    MicroRNA-148a Acts as a Tumor Suppressor in Osteosarcoma via Targeting Rho-Associated Coiled-Coil Kinase

    HaiYan Yang*†, ZhiGang Peng, ZhenZhen Da*, Xin Li, YeXiao Cheng*, BinBin Tan§, Xin Xiang, HaiPing Zheng, Yan Li*, LanHua Chen*, Ning Mo, XueXin Yan, Xiaolin Li*, XiaoHua Hu

    Oncology Research, Vol.25, No.8, pp. 1231-1243, 2017, DOI:10.3727/096504017X14850134190255

    Abstract MicroRNAs (miRs) have been demonstrated to be involved in the development and progression of osteosarcoma (OS), but the molecular mechanism still remains to be fully investigated. The present study investigated the function of miR-148a in OS, as well as its underlying mechanism. Our data showed that miR-148a was significantly downregulated in OS tissues compared to their matched adjacent normal tissues, and also in OS cell lines compared to normal human osteoblast cells. Low expression of miR-148a was significantly associated with tumor progression and a poor prognosis for OS patients. Rho-associated coiled-coil kinase 1 (ROCK1) was… More >

  • Open Access

    ARTICLE

    MicroRNA-21 Inhibits the Apoptosis of Osteosarcoma Cell Line SAOS-2 via Targeting Caspase 8

    Bin Xu, Hehuan Xia, Junming Cao, Zhihong Wang, Yipeng Yang, Yongsheng Lin

    Oncology Research, Vol.25, No.7, pp. 1161-1168, 2017, DOI:10.3727/096504017X14841698396829

    Abstract Currently, multiple microRNAs (miRNAs) have been found to play vital roles in the pathogenesis of osteosarcoma. This study aimed to investigate the role of miR-21 in osteosarcoma. The level of miR-21 in 20 pairs of osteosarcoma and corresponding adjacent tissues was monitored by qPCR. Human osteosarcoma cell line SAOS-2 was transfected with either miR-21 mimic or miR-21 inhibitor, and then cell viability, survival, and apoptosis were measured by MTT, colony formation assay, and flow cytometry. A target of miR-21 was predicted by the microRNA.org database and verified in vitro by using luciferase reporter, qPCR, and More >

  • Open Access

    ARTICLE

    Downregulation of Homeobox B7 Inhibits the Tumorigenesis and Progression of Osteosarcoma

    Lei Yang*, Fei Xie, Shuangqing Li

    Oncology Research, Vol.25, No.7, pp. 1089-1095, 2017, DOI:10.3727/096504016X14784668796788

    Abstract Homeobox B7 (HOXB7), a member of the HOX gene family, plays a role in tumorigenesis. However, until now the expression status and role of HOXB7 in osteosarcoma remain unclear. Therefore, the present study aimed to investigate the functional role and mechanism of HOXB7 in osteosarcoma. Our results demonstrated that HOXB7 was overexpressed in osteosarcoma cell lines. Downregulation of HOXB7 significantly inhibited osteosarcoma cell proliferation in vitro, as well as attenuated xenograft tumor growth in vivo. Downregulation of HOXB7 also inhibited the migration and invasion of osteosarcoma cells. Furthermore, downregulation of HOXB7 significantly suppressed the protein More >

  • Open Access

    ARTICLE

    Silencing Transmembrane Protein 45B (TNEM45B) Inhibits Proliferation, Invasion, and Tumorigenesis in Osteosarcoma Cells

    Yan Li1, Wei Guo1, Shen Liu, Bin Zhang, Bing-Bing Yu, Bo Yang, Shun-Li Kan, Shi-Qing Feng

    Oncology Research, Vol.25, No.6, pp. 1021-1026, 2017, DOI:10.3727/096504016X14821477992177

    Abstract Transmembrane protein 45B (TMEM45B) is a member of the TMEM family of proteins and has been reported to be expressed abnormally in different kinds of human tumors. However, the biological function of TMEM45B in osteosarcoma remains unclear. The objective of this study was to investigate the role of TMEM45B in regulating the biological behavior of osteosarcoma cells. Our results demonstrated that the expression of TMEM45B at both the protein and mRNA levels was dramatically upregulated in human osteosarcoma cell lines. Knockdown of TMEM45B significantly suppressed the proliferation, migration, and invasion of U2OS cells in vitro. More >

  • Open Access

    ARTICLE

    MicroRNA-373 Promotes Growth and Cellular Invasion in Osteosarcoma Cells by Activation of the PI3K/AKT–Rac1–JNK Pathway: The Potential Role in Spinal Osteosarcoma

    Yufeng Liu*, Zhengliang Cheng, Feng Pan, Weigang Yan§

    Oncology Research, Vol.25, No.6, pp. 989-999, 2017, DOI:10.3727/096504016X14813867762123

    Abstract Spinal osteosarcoma (OS) has been proven to be more difficult to treat owing to potently malignant metastasis. The present study aimed to explore the functional role of microRNA (miR)-373 in cell growth and invasion of OS cells, as well as its underlying mechanism. The expression of miR-373 was analyzed in spinal OS tissues and cell lines. MG-63 cells were transfected with the miR-373 mimic or inhibitor and/or treated with the phosphoinositide 3-kinase (PI3K) (LY294002) inhibitor or Ras-related C3 botulinum toxin substrate 1 (Rac) guanosine triphosphate (GTPase) (NSC23766) inhibitor, and then the impact of miR-373 aberrant… More >

  • Open Access

    ARTICLE

    Knockdown of SALL4 Inhibits Proliferation, Migration, and Invasion in Osteosarcoma Cells

    Dengfeng Zhang1, Feng Jiang1, Xiao Wang, Guojun Li

    Oncology Research, Vol.25, No.5, pp. 763-771, 2017, DOI:10.3727/096504016X14772402056137

    Abstract Sal-like protein 4 (SALL4) is a zinc finger transcription factor that has been reported to be aberrantly expressed in several human malignancies and identified as an oncogene. However, the potential role of SALL4 in osteosarcoma remains to be elucidated. In this study, we explored the biological functions of SALL4 in osteosarcoma. We found that SALL4 was overexpressed in osteosarcoma tissues and cell lines. Knockdown of SALL4 inhibited osteosarcoma cell proliferation, migration, and invasion in vitro. In addition, SALL4 knockdown suppressed osteosarcoma growth and metastasis in vivo. We also showed that SALL4 knockdown decreased the protein More >

  • Open Access

    ARTICLE

    Downregulation of Ubiquitin-Specific Protease 22 Inhibits Proliferation, Invasion, and Epithelial–Mesenchymal Transition in Osteosarcoma Cells

    Dengfeng Zhang1, Feng Jiang1, Xiao Wang, Guojun Li

    Oncology Research, Vol.25, No.5, pp. 743-751, 2017, DOI:10.3727/096504016X14772395226335

    Abstract Ubiquitin-specific protease 22 (USP22), a novel deubiquitinating enzyme, belongs to an extended family of proteins that have ubiquitin hydrolase activity. Recently, USP22 has attracted widespread attention because of its implication in carcinogenesis. However, there have been no studies, to our knowledge, investigating the expression of USP22 in osteosarcoma (OS) and its association with OS progression. In this study, we explored the role of USP22 in OS. We demonstrated that USP22 was highly expressed in OS tissue and cell lines. Downregulation of USP22 inhibited OS cell proliferation, invasion, and epithelial–mesenchymal transition (EMT) in vitro. In addition, More >

  • Open Access

    ARTICLE

    Knockdown of DDX46 Inhibits the Invasion and Tumorigenesis in Osteosarcoma Cells

    Feng Jiang1, Dengfeng Zhang1, Guojun Li, Xiao Wang

    Oncology Research, Vol.25, No.3, pp. 417-425, 2017, DOI:10.3727/096504016X14747253292210

    Abstract DDX46, a member of the DEAD-box (DDX) helicase family, is involved in the development of several tumors. However, the exact role of DDX46 in osteosarcoma and the underlying mechanisms in tumorigenesis remain poorly understood. Thus, in the present study, we explored the role of DDX46 in osteosarcoma and the underlying mechanisms. Our results demonstrated that the expression levels of DDX46 in both mRNA and protein were greatly elevated in human osteosarcoma tissues and cell lines. Knockdown of DDX46 obviously inhibited osteosarcoma cell proliferation and tumor growth in vivo. In addition, knockdown of DDX46 also significantly More >

Displaying 51-60 on page 6 of 69. Per Page