Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (93)
  • Open Access

    ARTICLE

    Rayleigh-Type Wave in A Rotated Piezoelectric Crystal Imperfectly Bonded on a Dielectric Substrate

    Guoquan Nie1, *, Menghe Wang1

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 257-274, 2019, DOI:10.32604/cmc.2019.04498

    Abstract Propagation characteristics of Rayleigh-type wave in a piezoelectric layered system are theoretically investigated. The piezoelectric layer is considered as a cubic crystal with finite thickness rotated about Y-axis and is imperfectly bonded onto a semi-infinite dielectric substrate. The imperfect interface between the two constituents is assumed to be mechanically compliant and dielectrically weakly conducting. The exact dispersion relations for electrically open or shorted boundary conditions are obtained. The numerical results show that the phase velocity of Rayleigh-type wave is symmetric with respect to the cut orientation of 45。 and can achieve the maximum propagation speed in this orientation. The mechanical… More >

  • Open Access

    ARTICLE

    Effect of An Initial Stress on SH-Type GuidedWaves Propagating in a Piezoelectric Layer Bonded on A Piezomagnetic Substrate

    Guoquan Nie1,2, Jinxi Liu1, Ming Li1

    CMC-Computers, Materials & Continua, Vol.48, No.3, pp. 133-145, 2015, DOI:10.3970/cmc.2015.048.133

    Abstract Propagation of SH-type guided waves in a layered structure with an invariant initial stress is studied, where a piezoelectric thin layer is perfectly bonded on a piezomagnetic substrate. Both the layer and the substrate possess transversely isotropic property. The dispersion relations of SH waves are obtained for four kinds of different electro-magnetic boundary conditions. The effects of initial stress, thickness ratio and electro-magnetic boundary conditions on the propagation behaviors are analyzed in detail. The numerical results show that: 1) The positive initial stresses make the phase velocity increasing, while the negative initial stresses decrease the phase velocity; 2) The smaller… More >

  • Open Access

    ARTICLE

    Simple Efficient Smart Finite Elements for the Analysis of Smart Composite Beams

    M. C. Ray1, L. Dong2, S. N. Atluri3

    CMC-Computers, Materials & Continua, Vol.47, No.3, pp. 143-177, 2015, DOI:10.3970/cmc.2015.047.143

    Abstract This paper is concerned with the development of new simple 4-noded locking-alleviated smart finite elements for modeling the smart composite beams. The exact solutions for the static responses of the overall smart composite beams are also derived for authenticating the new smart finite elements. The overall smart composite beam is composed of a laminated substrate conventional composite beam, and a piezoelectric layer attached at the top surface of the substrate beam. The piezoelectric layer acts as the actuator layer of the smart beam. Alternate finite element models of the beams, based on an “equivalent single layer high order shear deformation… More >

  • Open Access

    ARTICLE

    Wave Propagation in Functionally Graded Piezoelectric-piezomagnetic Rectangular Rings

    Yuchun Duan1, Xiaoming Zhang2,3, Yuqing Wang2, Jiangong Yu2

    CMC-Computers, Materials & Continua, Vol.43, No.3, pp. 153-174, 2014, DOI:10.3970/cmc.2014.043.153

    Abstract The ring ultrasonic transducers are widely used in the ocean engineering and medical fields. This paper proposes a double orthogonal polynomial series approach to solve the wave propagation problem in a functionally graded piezoelectric-piezomagnetic (FGPP) ring with a rectangular cross-section. Through numerical comparison with the available reference results for a pure elastic homogeneous rectangular bar, the validity of the proposed approach is illustrated. The dispersion curves and displacement distributions of various FGPP rectangular bars are calculated to reveal their wave characteristics. The results can be used for the design and optimization of the ring FGPP transducers. More >

  • Open Access

    ARTICLE

    A New Discrete-Layer Finite Element for Electromechanically Coupled Analyses of Piezoelectric Adaptive Composite Structures

    M. Al-Ajmi1, A. Benjeddou2

    CMC-Computers, Materials & Continua, Vol.23, No.3, pp. 265-286, 2011, DOI:10.3970/cmc.2011.023.265

    Abstract A new discrete layer finite element (DLFE) is presented for electro-mechanically coupled analyses of moderately thick piezoelectric adaptive composite plates. The retained kinematics is based on layer-wise first-order shear deformation theory, and considers the plies top and bottom surfaces in-plane displacements and the plate transverse deflection as mechanical unknowns. The former are assumed in-plane Lagrange linear, while the latter is assumed in-plane full (Lagrange) quadratic; this results in a nine nodes quadrangular (Q9) DLFE. The latter is validated in free-vibrations, first numerically against ANSYS three-dimensional piezoelectric finite elements for a cantilever moderately thick aluminum plate with two co-localized piezoceramic patches,… More >

  • Open Access

    ARTICLE

    Finite Rotation Piezoelectric Exact Geometry Solid-Shell Element with Nine Degrees of Freedom per Node

    G. M. Kulikov1, S. V. Plotnikova1

    CMC-Computers, Materials & Continua, Vol.23, No.3, pp. 233-264, 2011, DOI:10.3970/cmc.2011.023.233

    Abstract This paper presents a robust non-linear piezoelectric exact geometry (EG) four-node solid-shell element based on the higher-order 9-parameter equivalent single-layer (ESL) theory, which permits one to utilize 3D constitutive equations. The term EG reflects the fact that coefficients of the first and second fundamental forms of the reference surface are taken exactly at each element node. The finite element formulation developed is based on a new concept of interpolation surfaces (I-surfaces) inside the shell body. We introduce three I-surfaces and choose nine displacements of these surfaces as fundamental shell unknowns. Such choice allows us to represent the finite rotation piezoelectric… More >

  • Open Access

    ARTICLE

    Modeling of Effective Properties of Multiphase Magnetoelectroelastic Heterogeneous Materials

    A. Bakkali1, L. Azrar1,2, N. Fakri1

    CMC-Computers, Materials & Continua, Vol.23, No.3, pp. 201-232, 2011, DOI:10.3970/cmc.2011.023.201

    Abstract In this paper an N-phase Incremental Self Consistent model is developed for magnetoelectroelastic composites as well as the N-phase Mori-Tanaka and classical Self Consistent. Our aim here is to circumvent the limitation of the Self Consistent predictions for some coupling effective properties at certain inclusion volume fractions. The anomalies of the SC estimates are more drastic when the void inclusions are considered. The mathematical modeling is based on the heterogeneous inclusion problem of Eshelby which leads to an expression for the strain-electric-magnetic field related by integral equations. The effective N-phase magnetoelectroelastic moduli are expressed as a function of magnetoelectroelastic concentration… More >

  • Open Access

    ARTICLE

    Effect of Electric Field on the Response of Clamped-FreeMagnetostrictive/Piezoelectric/Magnetostrictive Laminates

    Kotaro Mori1, Fumio Narita1, Yasuhide Shindo1

    CMC-Computers, Materials & Continua, Vol.23, No.3, pp. 187-200, 2011, DOI:10.3970/cmc.2011.023.187

    Abstract This work deals with the response of clamped-free magnetostrictive/piezoelectric/magnetostrictive laminates under electric field both numerically and experimentally. The laminate is fabricated using two magnetostrictive Terfenol-D layers and a soft piezoelectric PZT layer. Easy axis of Terfenol-D layers is length direction, while the polarization of PZT layer is the thickness direction. The magnetostriction of the Terfenol-D layers bonded to the upper and lower surfaces of the PZT layer is first measured. Next, a nonlinear finite element analysis is employed to evaluate the second-order magnetoelastic constants in the Terfenol-D layers bonded to the PZT layer using measured data. The induced magnetic field… More >

  • Open Access

    ARTICLE

    The Boundary Contour Method for Piezoelectric Media with Quadratic Boundary Elements

    Aimin Jiang1,2, Yili Wu2

    CMC-Computers, Materials & Continua, Vol.12, No.2, pp. 101-120, 2009, DOI:10.3970/cmc.2009.012.101

    Abstract This paper presents a development of the boundary contour method (BCM) for piezoelectric media. Firstly, the divergence-free of the integrand of the piezoelectric boundary element method is proved. Secondly, the boundary contour method formulations are obtained by introducing quadratic shape functions and Green's functions (Computer Methods in Applied Mechanics and Engineering1998;158: 65-80) for piezoelectric media and using the rigid body motion solution to regularize the BCM and avoid computation of the corner tensor. The BCM is applied to the problem of piezoelectric media. Finally, numerical solutions for illustrative examples are compared with exact ones. The numerical results of the BCM… More >

  • Open Access

    ARTICLE

    Interfaces Between two Dissimilar Elastic Materials

    Chyanbin Hwu1, T.L. Kuo, Y.C. Chen

    CMC-Computers, Materials & Continua, Vol.11, No.3, pp. 165-184, 2009, DOI:10.3970/cmc.2009.011.165

    Abstract In this paper the near tip solutions for interface corners written in terms of the stress intensity factors are presented in a unified expression. This single expression is applicable for any kinds of interface corners including corners and cracks in homogeneous materials as well as interface corners and interface cracks lying between two dissimilar materials, in which the materials can be any kinds of linear elastic anisotropic materials or piezoelectric materials. Through this unified expression of near tip solutions, the singular orders of stresses and their associated stress/electric intensity factors for different kinds of interface problems can be determined through… More >

Displaying 81-90 on page 9 of 93. Per Page