Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access


    Fault Tolerance in the Joint EDF-RMS Algorithm: A Comparative Simulation Study

    Rashmi Sharma1, Nitin Nitin2, Deepak Dahiya3,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5197-5213, 2022, DOI:10.32604/cmc.2022.025059

    Abstract Failure is a systemic error that affects overall system performance and may eventually crash across the entire configuration. In Real-Time Systems (RTS), deadline is the key to successful completion of the program. If tasks effectively meet the deadline, it means the system is working in pristine order. However, missing the deadline means a systemic fault due to which the system can crash (hard RTS) or degrade inclusive performance (soft RTS). To fine-tune the RTS, tolerance is the critical issue and must be handled with extreme care. This article explains the context of fault tolerance with improvised Joint EDF-RMS algorithm in… More >

  • Open Access


    An Upper Bound of Task Loads in a Deadline-D All Busy Period for Multiprocessor Global EDF Real-Time Systems

    Fengxiang Zhang

    Computer Systems Science and Engineering, Vol.34, No.4, pp. 171-178, 2019, DOI:10.32604/csse.2019.34.171

    Abstract This paper addresses a number of mathematical issues related to multiprocessor global EDF platforms. We present a deadline-d all busy period and backward interference which are important concepts for multiprocessor EDF systems, and some general schedulability conditions for any studied job are proposed. We formally prove that at most m-1 different tasks’ jobs could contribute their execution time to an interval starting with a Pbusy−d, and we propose an approach for computing an exact upper bound of the total deadline-d task load in a given interval. Therefore, the proposed results are important foundations for constructing exact schedulability analyses of global… More >

  • Open Access


    Formal Modelling of Real-Time Self-Adaptive Multi-Agent Systems

    Awais Qasima, Syed Asad Raza Kazmib

    Intelligent Automation & Soft Computing, Vol.25, No.1, pp. 49-63, 2019, DOI:10.31209/2018.100000012

    Abstract The paradigm of multi-agent systems is very expressive to model distributed real-time systems. These real-time multi-agent systems by their working nature have temporal constraints as they need to operate in pervasive, dynamic and unpredictable environments. To achieve better fault-tolerance, they need to have the ability of self-adaptivity making them adaptable to the failures. Presently there is a lack of vocabulary for the formal modelling of real-time multi-agent systems with self-adaptive ability. In this research we proposed a framework named SMARTS for the formal modelling of self-adaptive real-time multi-agent systems. Our framework integrates MAPE-K interfaces, reflection perspective and unification with distribution… More >

Displaying 1-10 on page 1 of 3. Per Page  

Share Link