Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (44)
  • Open Access

    ARTICLE

    Investigating the Retrofit of RC Frames Using TADAS Yielding Dampers

    Mehrzad TahamouliRoudsari1,*, K. Cheraghi2, R. Aghayari2

    Structural Durability & Health Monitoring, Vol.16, No.4, pp. 343-359, 2022, DOI:10.32604/sdhm.2022.07927 - 03 January 2023

    Abstract TADAS dampers are a type of passive structural control system used in the seismic design or retrofitting of structures. These types of dampers are designed so that they would yield before the main components of the structure during earthquake. This dissipates a large portion of the earthquake’s energy and reduces the energy dissipation demand in the main components of the structure. Considering its suitable performance, this damper has been the subject of numerous studies. However, there are still ambiguities regarding the effect of the number of these dampers on the retrofitting of reinforced concrete (RC)… More >

  • Open Access

    ARTICLE

    Experimental Investigation on Fracture Performance of Short Basalt Fiber Bundle Reinforced Concrete

    Jinggan Shao1,2, Jiao Ma1, Renlong Liu1, Ye Liu3, Pu Zhang1,*, Yi Tang4, Yunjun Huang2

    Structural Durability & Health Monitoring, Vol.16, No.4, pp. 291-305, 2022, DOI:10.32604/sdhm.2022.015097 - 03 January 2023

    Abstract In this paper, a notched three-point bending test is used to study the fracture performance of the short basalt fiber bundle reinforced concrete (SBFBRC). To compare and analyze the enhancement effect of different diameters and different content of basalt fiber bundles on the fracture performance of concrete, some groups are set up, and the P-CMOD curves of each group of specimens are measured, and the fracture toughness and fracture energy of each control group are calculated. The fracture toughness and fracture energy are two important fracture performance parameters to study the effect and law of… More >

  • Open Access

    ARTICLE

    Experimental Study on the Degradation of Bonding Behavior between Reinforcing Bars and Concrete after Corrosion and Fatigue Damage

    Shiqin He*, Jiaxing Zhao, Chunyue Wang, Hui Wang

    Structural Durability & Health Monitoring, Vol.16, No.3, pp. 195-212, 2022, DOI:10.32604/sdhm.2022.08886 - 18 July 2022

    Abstract In marine environments, the durability of reinforced concrete structures such as bridges, which suffer from the coupled effects of corrosion and fatigue damage, is significantly reduced. Fatigue loading can result in severe deterioration of the bonds between reinforcing steel bars and the surrounding concrete, particularly when reinforcing bars are corroded. Uniaxial tension testing was conducted under static loading and fatigue loading conditions to investigate the bonding characteristics between corroded reinforcing bars and concrete. An electrolyte corrosion technique was used to accelerate steel corrosion. The results show that the bond strength was reduced under fatigue loading, More >

  • Open Access

    ARTICLE

    Seismic Analysis of Reinforced Concrete Silos under Far-Field and Near-Fault Earthquakes

    Anwer H. Hussein*, Hussam K. Risan

    Structural Durability & Health Monitoring, Vol.16, No.3, pp. 213-233, 2022, DOI:10.32604/sdhm.2022.018293 - 18 July 2022

    Abstract Silos are strategical structures used to stockpile various types of granular materials. They are highly vulnerable to earthquake excitation and have been frequently reported to fail at a higher rate than any other industrial structure. The seismic response of silos within the near-fault region will suffer a complex combination of loadings due to the unique characteristics of the near-fault ground motions; which are usually associated with a large amplitude pulse at the beginning of either the velocity or the displacement time histories. This study aims to numerically evaluate the seismic response of reinforced concrete cylindrical… More >

  • Open Access

    REVIEW

    A Review on the Mechanical Behaviour of Bamboo Reinforced Concrete Beams

    Usama Sayed1,2, Assima Dauletbek1,2, Xue Xin1,2, Rodolfo Lorenzo3, Haitao Li1,2,*

    Journal of Renewable Materials, Vol.10, No.12, pp. 3629-3657, 2022, DOI:10.32604/jrm.2022.022624 - 14 July 2022

    Abstract In light of the increasing demand for sustainable building materials, the effectiveness of bamboo utilization in various fields has become the object of scientists’ close attention. The increased interest in bamboo is explained by its sustainable characteristics, which make it the most preferred material for environmentally friendly and costeffective construction compared to conventional ones. Applicability of bamboo is vast and diverse: from decoration and furniture to structural members and reinforcement. Due to the low price, rich resources, and high elasticity, bamboo culms have also been used as an alternative to steel reinforcement in concrete structures. More >

  • Open Access

    REVIEW

    A Review of Fibre Reinforced Polymer (FRP) Reinforced Concrete Composite Column Members Modelling and Analysis Techniques

    Mahdi Hosseini1,2,*, Bingyu Jian1,2, Haitao Li1,2,*, Dong Yang1,2, Ziang Wang1,2, Zixian Feng1,2, Feng Shen3, Jian Zhang4, Rodolfo Lorenzo5, Ileana Corbi6, Ottavia Corbi6

    Journal of Renewable Materials, Vol.10, No.12, pp. 3243-3262, 2022, DOI:10.32604/jrm.2022.022171 - 14 July 2022

    Abstract The use of fibre-reinforced polymer (FRP) to confine concrete columns improves the strength and ductility of the columns by reducing passive lateral confinement pressure. Many numerical and analytical formulations have been proposed in the literature to describe the compressive behaviour of FRP confined concrete under both monotonic and cyclic loads. However, the effect of a stress/strain level in the columns has not been well defined because of the lack of well-defined strategies of modelling and oversimplification of the model. This paper reviews the existing FRP combinations and the available numerical and analytical methods to determine More >

  • Open Access

    ARTICLE

    Experimental Investigation on the Mechanical Properties of Natural Fiber Reinforced Concrete

    Ismail Shah1,2, Jing Li1,2,*, Shengyuan Yang1, Yubo Zhang1, Aftab Anwar1,2

    Journal of Renewable Materials, Vol.10, No.5, pp. 1307-1320, 2022, DOI:10.32604/jrm.2022.017513 - 22 December 2021

    Abstract Recently, addition of various natural fibers to high strength concrete has aroused great interest in the field of building materials. This is because natural fibers are much cheaper and locally available, as compare to synthetic fibers. Keeping in view, this current research conducted mainly focuses on the static properties of hybridized (sisal/coir), sisal and coir fiber-reinforced concrete. Two types of natural fibers sisal and coir were used in the experiment with different lengths of 10, 20 and 30 mm and various natural fiber concentrations of 0.5%, 1.0%, and 1.5% by mass of cement, to investigate… More > Graphic Abstract

    Experimental Investigation on the Mechanical Properties of Natural Fiber Reinforced Concrete

  • Open Access

    ARTICLE

    Estimation of Aleatory Randomness by Sa(T1)-Based Intensity Measures in Fragility Analysis of Reinforced Concrete Frame Structures

    Yantai Zhang1,*, Yongan Shi2, Baoyin Sun3, Zheng Wang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 73-96, 2022, DOI:10.32604/cmes.2022.016857 - 29 November 2021

    Abstract Based on the multiple stripes analysis method, an investigation of the estimation of aleatory randomness by Sa(T1)-based intensity measures (IMs) in the fragility analysis is carried out for two typical low- and medium-rise reinforced concrete (RC) frame structures with 4 and 8 stories, respectively. The sensitivity of the aleatory randomness estimated in fragility curves to various Sa(T1)-based IMs is analyzed at three damage limit states, i.e., immediate occupancy, life safety, and collapse prevention. In addition, the effect of characterization methods of bidirectional ground motion intensity on the record-to-record variability is investigated. It is found that the… More >

  • Open Access

    REVIEW

    Damage Assessment of Reinforced Concrete Structures through Damage Indices: A State-of-the-Art Review

    D. A. Makhloof, A. R. Ibrahim, Xiaodan Ren*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 849-874, 2021, DOI:10.32604/cmes.2021.016882 - 11 August 2021

    Abstract Due to the developments of computer science and technology in recent years, computer models and numerical simulations for large and complicated structures can be done. Among the vast information and results obtained from the analysis and simulations, the damage performance is of great importance since this damage might cause enormous losses for society and humanity, notably in cases of severe damage occurring. One of the most effective tools to handle the results about the damage performance of the structure is the damage index (DI) together with the damage states, which are used to correlate the… More >

  • Open Access

    ARTICLE

    The Measurement of the Local Slip in Bamboo-Reinforced Concrete Beams Using Moment-Curvature and Bond-Stress

    Muhtar*

    Journal of Renewable Materials, Vol.9, No.9, pp. 1631-1646, 2021, DOI:10.32604/jrm.2021.015452 - 23 April 2021

    Abstract This paper presents a method of measuring local slip in bamboo-reinforced concrete beams. Local slips (so) are calculated by reducing the elongation of the bamboo reinforcement (ebo) with the elongation of the concrete (eco). The elongation of bamboo reinforcement (ebo) is determined in two ways, namely, read directly through a straingauge mounted on the bamboo reinforcement and calculated based on the force analysis or curvature moment as a control. The elongation of the concrete (eco) is calculated using force analysis or curvature moment. The process of calculating curvature moments and bond stress employs the Excel program. The steps… More > Graphic Abstract

    The Measurement of the Local Slip in Bamboo-Reinforced Concrete Beams Using Moment-Curvature and Bond-Stress

Displaying 11-20 on page 2 of 44. Per Page