Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (92)
  • Open Access

    ARTICLE

    Multi-phase Oil Tank Recognition for High Resolution Remote Sensing Images

    Changjiang Liu1, Xuling Wu2, Bing Mo1, Yi Zhang3

    Intelligent Automation & Soft Computing, Vol.24, No.3, pp. 671-678, 2018, DOI:10.31209/2018.100000033

    Abstract With continuing commercialization of remote sensing satellites, the high resolution remote sensing image has been increasingly used in various fields of our life. However, processing technology of high resolution remote sensing images is still a tough problem. How to extract useful information from the massive information in high resolution remote sensing images is significant to the subsequent process. A multi-phase oil tank recognition of remote sensing images, namely coarse detection and artificial neural network (ANN) recognition, is proposed. The experimental results of algorithms presented in this paper show that the proposed processing technology is reliable More >

  • Open Access

    ARTICLE

    Snow Cover Mapping for Mountainous Areas by Fusion of MODIS L1B and Geographic Data Based on Stacked Denoising Auto-Encoders

    Xi Kan1, Yonghong Zhang2,*, Linglong Zhu2, Liming Xiao2, Jiangeng Wang3, Wei Tian4, Haowen Tan5

    CMC-Computers, Materials & Continua, Vol.57, No.1, pp. 49-68, 2018, DOI:10.32604/cmc.2018.02376

    Abstract Snow cover plays an important role in meteorological and hydrological researches. However, the accuracies of currently available snow cover products are significantly lower in mountainous areas than in plains, due to the serious snow/cloud confusion problem caused by high altitude and complex topography. Aiming at this problem, an improved snow cover mapping approach for mountainous areas was proposed and applied in Qinghai-Tibetan Plateau. In this work, a deep learning framework named Stacked Denoising Auto-Encoders (SDAE) was employed to fuse the MODIS multispectral images and various geographic datasets, which are then classified into three categories: Snow,… More >

Displaying 91-100 on page 10 of 92. Per Page