Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (106)
  • Open Access

    ARTICLE

    Sentinel-2 Satellite Imagery Application to Monitor Soil Salinity and Calcium Carbonate Contents in Agricultural Fields

    Ahmed M. Zeyada1,*, Khalid A. Al-Gaadi1,2, ElKamil Tola2, Rangaswamy Madugundu2, Ahmed A. Alameen2

    Phyton-International Journal of Experimental Botany, Vol.92, No.5, pp. 1603-1620, 2023, DOI:10.32604/phyton.2023.027267 - 09 March 2023

    Abstract The estuary tides affect groundwater dynamics; these areas are susceptible to waterlogging and salinity issues. A study was conducted on two fields with a total area of 60 hectares under a center pivot irrigation system that works with solar energy and belong to a commercial farm located in Northern Sudan. To monitor soil salinity and calcium carbonate in the area and stop future degradation of soil resources, easy, non-intrusive, and practical procedures are required. The objective of this study was to use remote sensing-determined Sentinel-2 satellite imagery using various soil indices to develop prediction models… More >

  • Open Access

    ARTICLE

    ResCD-FCN: Semantic Scene Change Detection Using Deep Neural Networks

    S. Eliza Femi Sherley1,*, J. M. Karthikeyan1, N. Bharath Raj1, R. Prabakaran2, A. Abinaya1, S. V. V. Lakshmi3

    Journal on Artificial Intelligence, Vol.4, No.4, pp. 215-227, 2022, DOI:10.32604/jai.2022.034931 - 25 May 2023

    Abstract Semantic change detection is extension of change detection task in which it is not only used to identify the changed regions but also to analyze the land area semantic (labels/categories) details before and after the timelines are analyzed. Periodical land change analysis is used for many real time applications for valuation purposes. Majority of the research works are focused on Convolutional Neural Networks (CNN) which tries to analyze changes alone. Semantic information of changes appears to be missing, there by absence of communication between the different semantic timelines and changes detected over the region happens.… More >

  • Open Access

    ARTICLE

    Remote Sensing Plateau Forest Segmentation with Boundary Preserving Double Loss Function Collaborative Learning

    Ying Ma1, Jiaqi Zhang2,3,4, Pengyu Liu1,2,3,4,*, Zhihao Wei5, Lingfei Zhang1, Xiaowei Jia6

    Journal of New Media, Vol.4, No.4, pp. 165-177, 2022, DOI:10.32604/jnm.2022.026684 - 12 December 2022

    Abstract Plateau forest plays an important role in the high-altitude ecosystem, and contributes to the global carbon cycle. Plateau forest monitoring request in-suit data from field investigation. With recent development of the remote sensing technic, large-scale satellite data become available for surface monitoring. Due to the various information contained in the remote sensing data, obtain accurate plateau forest segmentation from the remote sensing imagery still remain challenges. Recent developed deep learning (DL) models such as deep convolutional neural network (CNN) has been widely used in image processing tasks, and shows possibility for remote sensing segmentation. However,… More >

  • Open Access

    ARTICLE

    A Lightweight Model of VGG-U-Net for Remote Sensing Image Classification

    Mu Ye1,2,3,4, Li Ji1, Luo Tianye1, Li Sihan5, Zhang Tong1, Feng Ruilong1, Hu Tianli1,2,3,4, Gong He1,2,3,4, Guo Ying1,2,3,4, Sun Yu1,2,3,4, Thobela Louis Tyasi6, Li Shijun7,8,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6195-6205, 2022, DOI:10.32604/cmc.2022.026880 - 28 July 2022

    Abstract Remote sensing image analysis is a basic and practical research hotspot in remote sensing science. Remote sensing images contain abundant ground object information and it can be used in urban planning, agricultural monitoring, ecological services, geological exploration and other aspects. In this paper, we propose a lightweight model combining vgg-16 and u-net network. By combining two convolutional neural networks, we classify scenes of remote sensing images. While ensuring the accuracy of the model, try to reduce the memory of the model. According to the experimental results of this paper, we have improved the accuracy of… More >

  • Open Access

    ARTICLE

    An Optimal Method for High-Resolution Population Geo-Spatial Data

    Rami Sameer Ahmad Al Kloub*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2801-2820, 2022, DOI:10.32604/cmc.2022.027847 - 16 June 2022

    Abstract Mainland China has a poor distribution of meteorological stations. Existing models’ estimation accuracy for creating high-resolution surfaces of meteorological data is restricted for air temperature, and low for relative humidity and wind speed (few studies reported). This study compared the typical generalized additive model (GAM) and autoencoder-based residual neural network (hereafter, residual network for short) in terms of predicting three meteorological parameters, namely air temperature, relative humidity, and wind speed, using data from 824 monitoring stations across China’s mainland in 2015. The performance of the two models was assessed using a 10-fold cross-validation procedure. The… More >

  • Open Access

    ARTICLE

    Segmentation of Remote Sensing Images Based on U-Net Multi-Task Learning

    Ni Ruiwen1, Mu Ye1,2,3,4,*, Li Ji1, Zhang Tong1, Luo Tianye1, Feng Ruilong1, Gong He1,2,3,4, Hu Tianli1,2,3,4, Sun Yu1,2,3,4, Guo Ying1,2,3,4, Li Shijun5,6, Thobela Louis Tyasi7

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3263-3274, 2022, DOI:10.32604/cmc.2022.026881 - 16 June 2022

    Abstract In order to accurately segment architectural features in high-resolution remote sensing images, a semantic segmentation method based on U-net network multi-task learning is proposed. First, a boundary distance map was generated based on the remote sensing image of the ground truth map of the building. The remote sensing image and its truth map were used as the input in the U-net network, followed by the addition of the building ground prediction layer at the end of the U-net network. Based on the ResNet network, a multi-task network with the boundary distance prediction layer was built. More >

  • Open Access

    ARTICLE

    Extracting Lotus Fields Using the Spectral Characteristics of GF-1 Satellite Data

    Dongping Zha1,2, Haisheng Cai1,*, Xueling Zhang1, Qinggang He1, Liting Chen1, Chunqing Qiu1, Shufang Xia2

    Phyton-International Journal of Experimental Botany, Vol.91, No.10, pp. 2297-2311, 2022, DOI:10.32604/phyton.2022.020117 - 30 May 2022

    Abstract The lotus (Nelumbo nucifera Gaertn.) is an aquatic plant that grows in shallow water and has long been cultivated in South China. It can improve the incomes of farmers and plays an important role in alleviating poverty in rural China. However, a modern method is required to accurately estimate the area of lotus fields. Lotus has spectral characteristics similar to those of rice, grassland, and shrubs. The features surrounding areas where it is grown are complex, small, and fragmented. Few studies have examined the remote sensing extraction of lotus fields, and automatic extraction and mapping are More >

  • Open Access

    ARTICLE

    Object Detection in Remote Sensing Images Using Picture Fuzzy Clustering and MapReduce

    Tran Manh Tuan*, Tran Thi Ngan, Nguyen Tu Trung

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1241-1253, 2022, DOI:10.32604/csse.2022.024265 - 09 May 2022

    Abstract In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order to perform next steps in image processing. Remote sensing images usually have large size and various spatial resolutions. Thus, detecting objects in remote sensing images is very complicated. In this paper, we develop a model to detect objects in remote sensing images based on the combination of picture fuzzy clustering and MapReduce method (denoted as MPFC). Firstly, picture fuzzy clustering is applied to segment the input images. Then, MapReduce is… More >

  • Open Access

    ARTICLE

    Low Complexity Encoder with Multilabel Classification and Image Captioning Model

    Mahmoud Ragab1,2,3,*, Abdullah Addas4

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4323-4337, 2022, DOI:10.32604/cmc.2022.026602 - 21 April 2022

    Abstract Due to the advanced development in the multimedia-on-demand traffic in different forms of audio, video, and images, has extremely moved on the vision of the Internet of Things (IoT) from scalar to Internet of Multimedia Things (IoMT). Since Unmanned Aerial Vehicles (UAVs) generates a massive quantity of the multimedia data, it becomes a part of IoMT, which are commonly employed in diverse application areas, especially for capturing remote sensing (RS) images. At the same time, the interpretation of the captured RS image also plays a crucial issue, which can be addressed by the multi-label classification… More >

  • Open Access

    ARTICLE

    Intelligent Satin Bowerbird Optimizer Based Compression Technique for Remote Sensing Images

    M. Saravanan1, J. Jayanthi2, U. Sakthi3, R. Rajkumar4, Gyanendra Prasad Joshi5, L. Minh Dang5, Hyeonjoon Moon5,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2683-2696, 2022, DOI:10.32604/cmc.2022.025642 - 29 March 2022

    Abstract Due to latest advancements in the field of remote sensing, it becomes easier to acquire high quality images by the use of various satellites along with the sensing components. But the massive quantity of data poses a challenging issue to store and effectively transmit the remote sensing images. Therefore, image compression techniques can be utilized to process remote sensing images. In this aspect, vector quantization (VQ) can be employed for image compression and the widely applied VQ approach is Linde–Buzo–Gray (LBG) which creates a local optimum codebook for image construction. The process of constructing the… More >

Displaying 71-80 on page 8 of 106. Per Page