Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (316)
  • Open Access

    ARTICLE

    The Reproducing Kernel DMS-FEM: 3D Shape Functions and Applications to Linear Solid Mechanics

    Sunilkumar N1, D Roy1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.66, No.3, pp. 249-284, 2010, DOI:10.3970/cmes.2010.066.249

    Abstract We propose a family of 3D versions of a smooth finite element method (Sunilkumar and Roy 2010), wherein the globally smooth shape functions are derivable through the condition of polynomial reproduction with the tetrahedral B-splines (DMS-splines) or tensor-product forms of triangular B-splines and 1D NURBS bases acting as the kernel functions. While the domain decomposition is accomplished through tetrahedral or triangular prism elements, an additional requirement here is an appropriate generation of knotclouds around the element vertices or corners. The possibility of sensitive dependence of numerical solutions to the placements of knotclouds is largely arrested… More >

  • Open Access

    ARTICLE

    Shape Optimization in Time-Dependent Navier-Stokes Flows via Function Space Parametrization Technique1

    Zhiming Gao2, Yichen Ma3

    CMES-Computer Modeling in Engineering & Sciences, Vol.66, No.2, pp. 135-164, 2010, DOI:10.3970/cmes.2010.066.135

    Abstract Shape optimization technique has an increasing role in fluid dynamics problems governed by distributed parameter systems. In this paper, we present the problem of shape optimization of two dimensional viscous flow governed by the time dependent Navier-Stokes equations. The minimization problem of the viscous dissipated energy was established in the fluid domain. We derive the structure of continuous shape gradient of the cost functional by using the differentiability of a saddle point formulation with a function space parametrization technique. Finally a gradient type algorithm with mesh adaptation and mesh movement strategies is successfully and efficiently More >

  • Open Access

    ARTICLE

    A Smooth Finite Element Method Based on Reproducing Kernel DMS-Splines

    Sunilkumar N1, D Roy1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.65, No.2, pp. 107-154, 2010, DOI:10.3970/cmes.2010.065.107

    Abstract The element-based piecewise smooth functional approximation in the conventional finite element method (FEM) results in discontinuous first and higher order derivatives across element boundaries. Despite the significant advantages of the FEM in modelling complicated geometries, a motivation in developing mesh-free methods has been the ease with which higher order globally smooth shape functions can be derived via the reproduction of polynomials. There is thus a case for combining these advantages in a so-called hybrid scheme or a 'smooth FEM' that, whilst retaining the popular mesh-based discretization, obtains shape functions with uniform Cp(p ≥ 1) continuity. One… More >

  • Open Access

    ARTICLE

    Engineering Model to Predict Behaviors of Shape Memory Alloy Wire for Vibration Applications

    M.K. Kang1, E.H. Kim1, M.S. Rim1, I. Lee1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.64, No.3, pp. 227-250, 2010, DOI:10.3970/cmes.2010.064.227

    Abstract An engineering model for predicting the behavior of shape memory alloy (SMA) wire is presented in this study. Piecewise linear relations between stress and strain at a given temperature are assumed and the mixture rule of Reuss bounds is applied to get the elastic modulus of the SMAs in the mixed phase. Critical stresses and strains of the start and finish of the phase transformation are calculated at a given temperature by means of a linear constitutive equation and a stress-temperature diagram. Transformation conditions based on the critical stresses are translated in terms of critical More >

  • Open Access

    ARTICLE

    Application of Energy Finite Element Method to High-frequency Structural-acoustic Coupling of an Aircraft Cabin with Truncated Conical Shape

    M. X. Xie1, H. L. Chen1, J. H. Wu1, F. G. Sun1

    CMES-Computer Modeling in Engineering & Sciences, Vol.61, No.1, pp. 1-22, 2010, DOI:10.3970/cmes.2010.061.001

    Abstract Energy finite element method (EFEM) is a new method to solve high-frequency structural-acoustic coupling problems, but its use has been limited to solving simple structures such as rods, beams, plates and combined structures. In this paper, the high-frequency structural-acoustic coupling characteristics of an aircraft cabin are simulated by regarding the shell as a number of flat shell elements connected with a certain angle in EFEM. Two tests validated the method employed in this paper. First, the structural response analysis of a cylinder was calculated in two ways: dividing the shell by axis-symmetric shells after deriving… More >

  • Open Access

    ARTICLE

    Shape Memory Alloy: from Constitutive Modeling to Finite Element Analysis of Stent Deployment

    F. Auricchio1,2,3,4,1,5,1, M. Contisup>1,5,S. Morgantisup>1,, A. Reali1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.3, pp. 225-244, 2010, DOI:10.3970/cmes.2010.057.225

    Abstract The use of shape memory alloys (SMA) in an increasing number of applications in many fields of engineering, and in particular in biomedical engineering, is leading to a growing interest toward an exhaustive modeling of their macroscopic behavior in order to construct reliable simulation tools for SMA-based devices. In this paper, we review the properties of a robust three-dimensional model able to reproduce both pseudo-elastic and shape-memory effect; then we calibrate the model parameters on experimental data and, finally, we exploit the model to perform the finite element analysis of pseudo-elastic Nitinol stent deployment in More >

  • Open Access

    ARTICLE

    Patch size and shape and their relationship with tree and shrub species richness

    Pincheira-Ulbrich1 J, JR Rau2, F Peña-Cortés1

    Phyton-International Journal of Experimental Botany, Vol.78, pp. 121-128, 2009, DOI:10.32604/phyton.2009.78.121

    Abstract The size and shape of 10 native forest patches were related to tree and shrub species richness in the pre coastal mountain range in Osorno province, southern Chile. Four regression models were adjusted (lineal, logarithm, exponential, and power regression) between patch size (area = x) and tree and shrub species richness (y). Patch shape was quantified through three indexes (Patton diversity index, compactness index and fractal dimension) which were correlated with the tree and shrub richness. Results allowed to conclude that (1) species richness tends to increase significantly with patch size; this relationship was explained More >

  • Open Access

    ARTICLE

    Generalized Stress Intensity Factors for Wedge-Shaped Defect in Human Tooth after Restored with Composite Resins

    Kyousuke Yamaguchi1, Nao-Aki Noda2, Ker-Kong Chen3, Kiyoshi Tajima3, Seiji Harada1, Xin Lan1

    Structural Durability & Health Monitoring, Vol.5, No.3, pp. 191-200, 2009, DOI:10.3970/sdhm.2009.005.191

    Abstract Wedge-shaped defects are frequently observed on the cervical region of the human tooth. Previously, most studies explained that improper tooth-brushing causes such defects. However, recent clinical observation suggested that the repeated stress due to occlusal force may induce the formation of these wedge-shaped defects. In this study, a two-dimensional human tooth model after a wedge-shaped defect is restored with the composite resin is analyzed by using the finite element method. To obtain the intensity of the singular stress accurately, a method of analysis is discussed for calculating generalized stress intensity factors, which control the singular More >

  • Open Access

    ARTICLE

    Studies on Methodological Developments in Structural Damage Identification

    V. Srinivas1, Saptarshi Sasmal1, K. Ramanjaneyulu2

    Structural Durability & Health Monitoring, Vol.5, No.2, pp. 133-160, 2009, DOI:10.3970/sdhm.2009.005.133

    Abstract Many advances have taken place in the area of structural damage detection and localization using several approaches. Availability of cost-effective computing memory and speed, improvement in sensor technology including remotely monitored sensors, advancements in the finite element method, adaptation of modal testing and development of non-linear system identification methods bring out immense technical advancements that have contributed to the advancement of modal-based damage detection methods. Advances in modal-based damage detection methods over the last 20-30 years have produced new techniques for examining vibration data for identification of structural damage. In this paper, studies carried out… More >

  • Open Access

    ABSTRACT

    A study of simulation of down pressing nanoscale depth of abrasive grains in different shapes by two dimensional quasi-steady molecular statics model

    Zone-Ching Lin1, Ming-Long Huang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.3, pp. 89-90, 2009, DOI:10.3970/icces.2009.010.089

    Abstract The paper develops a two dimensional quasi-steady molecular staic model to simulate the vertical down press copper workpiece by down press the nanoscale depth of abrasive grains in different shapes. The research of the down pressing copper workpiece of abrasive grains in this paper uses the hexagonal close packed diamond abrasive grains to down press the perfect face-centered cubic copper. The paper's simulation of down pressing nanoscale depth model of abrasive grain by two dimensional quasi-steady molecular statics model is a step by step to down press copper workpiece by diamond abrasive grain. It is… More >

Displaying 261-270 on page 27 of 316. Per Page