Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (255)
  • Open Access

    ARTICLE

    Preparation and Characterization of Tung Oil Toughened Modified Phenolic Foams with Enhanced Mechanical Properties and Smoke Suppression

    Fei Song1,2, Puyou Jia1,*, Caiying Bo1, Xiaoli Ren1, Lihong Hu1, Yonghong Zhou1,*

    Journal of Renewable Materials, Vol.8, No.5, pp. 535-547, 2020, DOI:10.32604/jrm.2020.09304 - 29 April 2020

    Abstract In this study, we prepared a series of tung oil phenolic foams (TPF) by a one-pot method. The FT-IR and 1 H NMR spectra confirm the successful FriedelCrafts grafting of phenol to the long-chain alkyl group in tung oil. Modified TPFs exhibit enhanced mechanical properties, including compressive and flexural strengths of up to 0.278 ± 0.036 MPa and 0.450 ± 0.017 MPa, respectively, which represent increases of 68.75% and 86.72% over those of pure phenolic foam (PF). SEM spectra reveal the TPF microstructure to have uniform hexagonal cell morphology, narrower cell size distribution, and smaller More >

  • Open Access

    ARTICLE

    Geophysical and Production Data History Matching Based on Ensemble Smoother with Multiple Data Assimilation

    Zelong Wang1, 2, 3, *, Xiangui Liu1, 2, 3, Haifa Tang3, Zhikai Lv3, Qunming Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 873-893, 2020, DOI:10.32604/cmes.2020.08993 - 01 May 2020

    Abstract The Ensemble Kalman Filter (EnKF), as the most popular sequential data assimilation algorithm for history matching, has the intrinsic problem of high computational cost and the potential inconsistency of state variables updated at each loop of data assimilation and its corresponding reservoir simulated result. This problem forbids the reservoir engineers to make the best use of the 4D seismic data, which provides valuable information about the fluid change inside the reservoir. Moreover, only matching the production data in the past is not enough to accurately forecast the future, and the development plan based on the… More >

  • Open Access

    ARTICLE

    Intent Inference Based Trajectory Prediction and Smooth for UAS in Low-Altitude Airspace with Geofence

    Qixi Fu1, Xiaolong Liang1, 2, Jiaqiang Zhang1, *, Xiangyu Fan1, 2

    CMC-Computers, Materials & Continua, Vol.63, No.1, pp. 417-444, 2020, DOI:10.32604/cmc.2020.07044 - 30 March 2020

    Abstract In order to meet the higher accuracy requirement of trajectory prediction for Unmanned Aircraft System (UAS) in Unmanned Aircraft System Traffic Management (UTM), an Intent Based Trajectory Prediction and Smooth Based on Constrained State-dependent-transition Hybrid Estimation (CSDTHE-IBTPS) algorithm is proposed. Firstly, an intent inference method of UAS is constructed based on the information of ADS-B and geofence system. Moreover, a geofence layering algorithm is proposed. Secondly, the Flight Mode Change Points (FMCP) are used to define the relevant mode transition parameters and design the guard conditions, so as to generate the mode transition probability matrix… More >

  • Open Access

    ARTICLE

    Numerical Study on Rock Breaking Mechanism of Supercritical CO2 Jet Based on Smoothed Particle Hydrodynamics

    Xiaofeng Yang1, *, Yanhong Li1, Aiguo Nie1, Sheng Zhi2, Liyuan Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 1141-1157, 2020, DOI:10.32604/cmes.2020.08538 - 01 March 2020

    Abstract Supercritical carbon dioxide (Sc-CO2) jet rock breaking is a nonlinear impact dynamics problem involving many factors. Considering the complexity of the physical properties of the Sc-CO2 jet and the mesh distortion problem in dealing with large deformation problems using the finite element method, the smoothed particle hydrodynamics (SPH) method is used to simulate and analyze the rock breaking process by Sc-CO2 jet based on the derivation of the jet velocity-density evolution mathematical model. The results indicate that there exisits an optimal rock breaking temperature by Sc-CO2. The volume and length of the rock fracture increase with the… More >

  • Open Access

    ARTICLE

    Application of Smooth Particle Hydrodynamics Method for Modelling Blood Flow with Thrombus Formation

    M. Al-Saad1, C. A. Suarez2, 4, A. Obeidat2, S. P. A. Bordas1, 2, 3, *, S. Kulasegaram1

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 831-862, 2020, DOI:10.32604/cmes.2020.08527 - 01 March 2020

    Abstract Thrombosis plays a crucial role in atherosclerosis or in haemostasis when a blood vessel is injured. This article focuses on using a meshless particle-based Lagrangian numerical technique, the smoothed particles hydrodynamic (SPH) method, to study the flow behaviour of blood and to explore the flow parameters that induce formation of a thrombus in a blood vessel. Due to its simplicity and effectiveness, the SPH method is employed here to simulate the process of thrombogenesis and to study the effect of various blood flow parameters. In the present SPH simulation, blood is modelled by two sets More >

  • Open Access

    ARTICLE

    A Modified Three-Term Conjugate Gradient Algorithm for Large-Scale Nonsmooth Convex Optimization

    Wujie Hu1, Gonglin Yuan1, *, Hongtruong Pham2

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 787-800, 2020, DOI:10.32604/cmc.2020.02993

    Abstract It is well known that Newton and quasi-Newton algorithms are effective to small and medium scale smooth problems because they take full use of corresponding gradient function’s information but fail to solve nonsmooth problems. The perfect algorithm stems from concept of ‘bundle’ successfully addresses both smooth and nonsmooth complex problems, but it is regrettable that it is merely effective to small and medium optimization models since it needs to store and update relevant information of parameter’s bundle. The conjugate gradient algorithm is effective both large-scale smooth and nonsmooth optimization model since its simplicity that utilizes More >

  • Open Access

    ARTICLE

    Dynamic Analysis of Stochastic Friction Systems Using the Generalized Cell Mapping Method

    Shichao Ma1, 2, *, Xin Ning1, 2, *, Liang Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.1, pp. 49-59, 2020, DOI:10.32604/cmes.2020.06911 - 01 January 2020

    Abstract Friction systems are a kind of typical non-linear dynamical systems in the actual engineering and often generate abundant dynamics phenomena. Because of non-smooth characteristics, it is difficult to handle these systems by conventional analysis methods directly. At the same time, random perturbation often affects friction systems and makes these systems more complicated. In this context, we investigate the steady-state stochastic responses and stochastic P-bifurcation of friction systems under random excitations in this paper. And in order to retain the non-smooth of friction system, the generalized cell mapping (GCM) method is first used to the original… More >

  • Open Access

    ARTICLE

    Short-term Forecasting of Air Passengers Based on the Hybrid Rough Set and the Double Exponential Smoothing Model

    Haresh Kumar Sharma, Kriti Kumari, Samarjit Kar

    Intelligent Automation & Soft Computing, Vol.25, No.1, pp. 1-14, 2019, DOI:10.31209/2018.100000036

    Abstract This article focuses on the use of the rough set theory in modeling of time series forecasting. In this paper, we have used the double exponential smoothing (DES) model for forecasting. The classical DES model has been improved by using the rough set technique. The improved double exponential smoothing (IDES) method can be used for the time series data without any statistical assumptions. The proposed method is applied on tourism demand of the air transportation passenger data set in Australia and the results are compared with the classical DES model. It has been observed that More >

  • Open Access

    ARTICLE

    A Dual-Support Smoothed Particle Hydrodynamics for Weakly Compressible Fluid Inspired By the Dual-Horizon Peridynamics

    Huilong Ren1, Xiaoying Zhuang2,3,*, Timon Rabczuk1

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.2, pp. 353-383, 2019, DOI:10.32604/cmes.2019.05146

    Abstract A dual-support smoothed particle hydrodynamics (DS-SPH) that allows variable smoothing lengths while satisfying the conservations of linear momentum, angular momentum and energy is developed. The present DS-SPH is inspired by the dual-support, a concept introduced from dual-horizon peridynamics from the authors and applied here to SPH so that the unbalanced interactions between the particles with different smoothing lengths can be correctly considered and computed. Conventionally, the SPH formulation employs either the influence domain or the support domain. The concept of dual-support identifies that the influence domain and the support domain involves the duality and should More >

  • Open Access

    ABSTRACT

    Dependency of Nuclear Deformation of Smooth Muscle Cells on Tissue Stretch Direction May Explain Anisotropic Response of Aortic Wall to Hypertension

    Takeo Matsumoto1,*, Chizuru Hirooka1, Yong Fan1, Junfeng Wang1, Naoki Mori1, Eijiro Maeda1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 81-81, 2019, DOI:10.32604/mcb.2019.07102

    Abstract Aortic wall thickens in response to hypertension. Many studies reported that the wall thickening occurs to maintain the wall stress in the circumferential direction at a constant level. In case of the longitudinal direction, however, there are few studies suggesting the constancy of the stress. Such anisotropic response may be attributable to the circumferential alignment of the smooth muscle cells (SMCs) in the wall [1]. However, to the authors’ knowledge, there are no study discussing the underlying mechanism of the anisotropic response. It has been reported that mechanical deformation of the nuclei causes transcription upregulation… More >

Displaying 161-170 on page 17 of 255. Per Page