Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (185)
  • Open Access


    A Strengthened Dominance Relation NSGA-III Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem

    Liang Zeng1,2, Junyang Shi1, Yanyan Li1, Shanshan Wang1,2,*, Weigang Li3

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 375-392, 2024, DOI:10.32604/cmc.2023.045803

    Abstract The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems. It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives. The Non-dominated Sorting Genetic Algorithm III (NSGA-III) is an effective approach for solving the multi-objective job shop scheduling problem. Nevertheless, it has some limitations in solving scheduling problems, including inadequate global search capability, susceptibility to premature convergence, and challenges in balancing convergence and diversity. To enhance its performance, this paper introduces a strengthened dominance relation NSGA-III… More >

  • Open Access


    Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing

    Shasha Zhao1,2,3,*, Huanwen Yan1,2, Qifeng Lin1,2, Xiangnan Feng1,2, He Chen1,2, Dengyin Zhang1,2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1135-1156, 2024, DOI:10.32604/cmc.2024.045660

    Abstract Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment. Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios. In this work, the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm (HPSO-EABC) has been proposed, which hybrids our presented Evolutionary Artificial Bee Colony (EABC), and Hierarchical Particle Swarm Optimization (HPSO) algorithm. The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm. Comprehensive testing including evaluations of algorithm convergence speed,… More >

  • Open Access


    Performance Prediction Based Workload Scheduling in Co-Located Cluster

    Dongyang Ou, Yongjian Ren, Congfeng Jiang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2043-2067, 2024, DOI:10.32604/cmes.2023.029987

    Abstract Cloud service providers generally co-locate online services and batch jobs onto the same computer cluster, where the resources can be pooled in order to maximize data center resource utilization. Due to resource competition between batch jobs and online services, co-location frequently impairs the performance of online services. This study presents a quality of service (QoS) prediction-based scheduling model (QPSM) for co-located workloads. The performance prediction of QPSM consists of two parts: the prediction of an online service’s QoS anomaly based on XGBoost and the prediction of the completion time of an offline batch job based… More >

  • Open Access


    Two-Stage Optimal Scheduling of Community Integrated Energy System

    Ming Li1,*, Rifucairen Fu1, Tuerhong Yaxiaer1, Yunping Zheng1, Abiao Huang2, Ronghui Liu2, Shunfu Lin2

    Energy Engineering, Vol.121, No.2, pp. 405-424, 2024, DOI:10.32604/ee.2023.044509

    Abstract From the perspective of a community energy operator, a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads. The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system (IES) before and after; the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme, taking into account the fluctuation of wind turbine output and load within a short period of time and according to More >

  • Open Access


    Low-Carbon Dispatch of an Integrated Energy System Considering Confidence Intervals for Renewable Energy Generation

    Yan Shi1, Wenjie Li1, Gongbo Fan2,*, Luxi Zhang1, Fengjiu Yang1

    Energy Engineering, Vol.121, No.2, pp. 461-482, 2024, DOI:10.32604/ee.2023.043835

    Abstract Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation, this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side. A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation, with the overarching goal of optimizing the system for low-carbon operation. To begin with, an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation… More >

  • Open Access


    A Novel Predictive Model for Edge Computing Resource Scheduling Based on Deep Neural Network

    Ming Gao1,#, Weiwei Cai1,#, Yizhang Jiang1, Wenjun Hu3, Jian Yao2, Pengjiang Qian1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 259-277, 2024, DOI:10.32604/cmes.2023.029015

    Abstract Currently, applications accessing remote computing resources through cloud data centers is the main mode of operation, but this mode of operation greatly increases communication latency and reduces overall quality of service (QoS) and quality of experience (QoE). Edge computing technology extends cloud service functionality to the edge of the mobile network, closer to the task execution end, and can effectively mitigate the communication latency problem. However, the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management, and the booming development of artificial neural networks provides More >

  • Open Access


    An Improved Multi-Objective Hybrid Genetic-Simulated Annealing Algorithm for AGV Scheduling under Composite Operation Mode

    Jiamin Xiang1, Ying Zhang1, Xiaohua Cao1,*, Zhigang Zhou2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3443-3466, 2023, DOI:10.32604/cmc.2023.045120

    Abstract This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles (AGVs) under the composite operation mode. The multi-objective model aims to minimize the maximum completion time, the total distance covered by AGVs, and the distance traveled while empty-loaded. The improved hybrid algorithm combines the improved genetic algorithm (GA) and the simulated annealing algorithm (SA) to strengthen the local search ability of the algorithm and improve the stability of the calculation results. Based on the characteristics of the composite operation mode, the authors introduce the… More >

  • Open Access


    A Novel Energy and Communication Aware Scheduling on Green Cloud Computing

    Laila Almutairi1, Shabnam Mohamed Aslam2,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2791-2811, 2023, DOI:10.32604/cmc.2023.040268

    Abstract The rapid growth of service-oriented and cloud computing has created large-scale data centres worldwide. Modern data centres’ operating costs mostly come from back-end cloud infrastructure and energy consumption. In cloud computing, extensive communication resources are required. Moreover, cloud applications require more bandwidth to transfer large amounts of data to satisfy end-user requirements. It is also essential that no communication source can cause congestion or bag loss owing to unnecessary switching buffers. This paper proposes a novel Energy and Communication (EC) aware scheduling (EC-scheduler) algorithm for green cloud computing, which optimizes data centre energy consumption and… More >

  • Open Access


    Efficient Cloud Resource Scheduling with an Optimized Throttled Load Balancing Approach

    V. Dhilip Kumar1, J. Praveenchandar2, Muhammad Arif3,*, Adrian Brezulianu4, Oana Geman5, Atif Ikram3,6

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2179-2188, 2023, DOI:10.32604/cmc.2023.034764

    Abstract Cloud Technology is a new platform that offers on-demand computing Peripheral such as storage, processing power, and other computer system resources. It is also referred to as a system that will let the consumers utilize computational resources like databases, servers, storage, and intelligence over the Internet. In a cloud network, load balancing is the process of dividing network traffic among a cluster of available servers to increase efficiency. It is also known as a server pool or server farm. When a single node is overwhelmed, balancing the workload is needed to manage unpredictable workflows. The More >

  • Open Access


    Improved STN Models and Heuristic Rules for Cooperative Scheduling in Automated Container Terminals

    Hongyan Xia, Jin Zhu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1637-1661, 2024, DOI:10.32604/cmes.2023.029576

    Abstract Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to cope with the development trend of large-scale ships. In order to improve the solution efficiency of the existing space-time network (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guided vehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balance constraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added to acquire the model STN_A. The coupling constraint in STN_A is updated, and… More >

Displaying 21-30 on page 3 of 185. Per Page