Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    ResCD-FCN: Semantic Scene Change Detection Using Deep Neural Networks

    S. Eliza Femi Sherley1,*, J. M. Karthikeyan1, N. Bharath Raj1, R. Prabakaran2, A. Abinaya1, S. V. V. Lakshmi3

    Journal on Artificial Intelligence, Vol.4, No.4, pp. 215-227, 2022, DOI:10.32604/jai.2022.034931

    Abstract Semantic change detection is extension of change detection task in which it is not only used to identify the changed regions but also to analyze the land area semantic (labels/categories) details before and after the timelines are analyzed. Periodical land change analysis is used for many real time applications for valuation purposes. Majority of the research works are focused on Convolutional Neural Networks (CNN) which tries to analyze changes alone. Semantic information of changes appears to be missing, there by absence of communication between the different semantic timelines and changes detected over the region happens. To overcome this limitation, a… More >

  • Open Access

    ARTICLE

    Génération de cartes tactiles photoréalistes pour personnes déficientes visuelles par apprentissage profond

    Gauthier Fillières-Riveau1 , Jean-Marie Favreau1 , Vincent Barra1 , Guillaume Touya2

    Revue Internationale de Géomatique, Vol.30, No.1, pp. 105-126, 2020, DOI:10.3166/rig.2020.00104

    Abstract Photo-realistic tactile maps are one of the tools used by visually impaired people to understand their immediate urban environment, particularly in the context of mobility, for crossing crossroads for example. These maps are nowadays mainly hand-made. In this article, we propose an approach to produce a semantic segmentation of precision aerial imagery, a central step in this manufacturing process. The different elements of interest such as sidewalks, pedestrian crossings, or central islands are thus located and traced in the urban space. We present in particular how the augmentation of this imagery by vector data from OpenStreetMap leads to significant results… More >

  • Open Access

    ARTICLE

    Optimizing Spatial Relationships in GCN to Improve the Classification Accuracy of Remote Sensing Images

    Zimeng Yang, Qiulan Wu, Feng Zhang*, Xuefei Chen, Weiqiang Wang, Xueshen Zhang

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 491-506, 2023, DOI:10.32604/iasc.2023.037558

    Abstract Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation. With the continuous development of artificial intelligence technology, the use of deep learning methods for interpreting remote-sensing images has matured. Existing neural networks disregard the spatial relationship between two targets in remote sensing images. Semantic segmentation models that combine convolutional neural networks (CNNs) and graph convolutional neural networks (GCNs) cause a lack of feature boundaries, which leads to the unsatisfactory segmentation of various target feature boundaries. In this paper, we propose a new semantic segmentation model for remote sensing images (called DGCN hereinafter),… More >

  • Open Access

    ARTICLE

    Adaptive Boundary and Semantic Composite Segmentation Method for Individual Objects in Aerial Images

    Ying Li1,2, Guanghong Gong1, Dan Wang1, Ni Li1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2237-2265, 2023, DOI:10.32604/cmes.2023.025193

    Abstract There are two types of methods for image segmentation. One is traditional image processing methods, which are sensitive to details and boundaries, yet fail to recognize semantic information. The other is deep learning methods, which can locate and identify different objects, but boundary identifications are not accurate enough. Both of them cannot generate entire segmentation information. In order to obtain accurate edge detection and semantic information, an Adaptive Boundary and Semantic Composite Segmentation method (ABSCS) is proposed. This method can precisely semantic segment individual objects in large-size aerial images with limited GPU performances. It includes adaptively dividing and modifying the… More > Graphic Abstract

    Adaptive Boundary and Semantic Composite Segmentation Method for Individual Objects in Aerial Images

  • Open Access

    ARTICLE

    A Semantic Adversarial Network for Detection and Classification of Myopic Maculopathy

    Qaisar Abbas1, Abdul Rauf Baig1,*, Ayyaz Hussain2

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1483-1499, 2023, DOI:10.32604/cmc.2023.036366

    Abstract The diagnosis of eye disease through deep learning (DL) technology is the latest trend in the field of artificial intelligence (AI). Especially in diagnosing pathologic myopia (PM) lesions, the implementation of DL is a difficult task because of the classification complexity and definition system of PM. However, it is possible to design an AI-based technique that can identify PM automatically and help doctors make relevant decisions. To achieve this objective, it is important to have adequate resources such as a high-quality PM image dataset and an expert team. The primary aim of this research is to design and train the… More >

  • Open Access

    ARTICLE

    Semantic Segmentation by Using Down-Sampling and Subpixel Convolution: DSSC-UNet

    Young-Man Kwon, Sunghoon Bae, Dong-Keun Chung, Myung-Jae Lim*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 683-696, 2023, DOI:10.32604/cmc.2023.033370

    Abstract Recently, semantic segmentation has been widely applied to image processing, scene understanding, and many others. Especially, in deep learning-based semantic segmentation, the U-Net with convolutional encoder-decoder architecture is a representative model which is proposed for image segmentation in the biomedical field. It used max pooling operation for reducing the size of image and making noise robust. However, instead of reducing the complexity of the model, max pooling has the disadvantage of omitting some information about the image in reducing it. So, this paper used two diagonal elements of down-sampling operation instead of it. We think that the down-sampling feature maps… More >

  • Open Access

    ARTICLE

    Image Semantic Segmentation for Autonomous Driving Based on Improved U-Net

    Chuanlong Sun, Hong Zhao*, Liang Mu, Fuliang Xu, Laiwei Lu

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 787-801, 2023, DOI:10.32604/cmes.2023.025119

    Abstract Image semantic segmentation has become an essential part of autonomous driving. To further improve the generalization ability and the robustness of semantic segmentation algorithms, a lightweight algorithm network based on Squeeze-and-Excitation Attention Mechanism (SE) and Depthwise Separable Convolution (DSC) is designed. Meanwhile, Adam-GC, an Adam optimization algorithm based on Gradient Compression (GC), is proposed to improve the training speed, segmentation accuracy, generalization ability and stability of the algorithm network. To verify and compare the effectiveness of the algorithm network proposed in this paper, the trained network model is used for experimental verification and comparative test on the Cityscapes semantic segmentation… More >

  • Open Access

    ARTICLE

    DuFNet: Dual Flow Network of Real-Time Semantic Segmentation for Unmanned Driving Application of Internet of Things

    Tao Duan1, Yue Liu1, Jingze Li1, Zhichao Lian2,*, Qianmu Li2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 223-239, 2023, DOI:10.32604/cmes.2023.024742

    Abstract The application of unmanned driving in the Internet of Things is one of the concrete manifestations of the application of artificial intelligence technology. Image semantic segmentation can help the unmanned driving system by achieving road accessibility analysis. Semantic segmentation is also a challenging technology for image understanding and scene parsing. We focused on the challenging task of real-time semantic segmentation in this paper. In this paper, we proposed a novel fast architecture for real-time semantic segmentation named DuFNet. Starting from the existing work of Bilateral Segmentation Network (BiSeNet), DuFNet proposes a novel Semantic Information Flow (SIF) structure for context information… More > Graphic Abstract

    DuFNet: Dual Flow Network of Real-Time Semantic Segmentation for Unmanned Driving Application of Internet of Things

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Model for Real Time Hand Gestures Recognition

    S. Gnanapriya1,*, K. Rahimunnisa2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1105-1119, 2023, DOI:10.32604/iasc.2023.032832

    Abstract The performance of Hand Gesture Recognition (HGR) depends on the hand shape. Segmentation helps in the recognition of hand gestures for more accuracy and improves the overall performance compared to other existing deep neural networks. The crucial segmentation task is extremely complicated because of the background complexity, variation in illumination etc. The proposed modified UNET and ensemble model of Convolutional Neural Networks (CNN) undergoes a two stage process and results in proper hand gesture recognition. The first stage is segmenting the regions of the hand and the second stage is gesture identification. The modified UNET segmentation model is trained using… More >

  • Open Access

    ARTICLE

    A Survey on Image Semantic Segmentation Using Deep Learning Techniques

    Jieren Cheng1,3, Hua Li2,*, Dengbo Li3, Shuai Hua2, Victor S. Sheng4

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1941-1957, 2023, DOI:10.32604/cmc.2023.032757

    Abstract Image semantic segmentation is an important branch of computer vision of a wide variety of practical applications such as medical image analysis, autonomous driving, virtual or augmented reality, etc. In recent years, due to the remarkable performance of transformer and multilayer perceptron (MLP) in computer vision, which is equivalent to convolutional neural network (CNN), there has been a substantial amount of image semantic segmentation works aimed at developing different types of deep learning architecture. This survey aims to provide a comprehensive overview of deep learning methods in the field of general image semantic segmentation. Firstly, the commonly used image segmentation… More >

Displaying 1-10 on page 1 of 29. Per Page  

Share Link