Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (181)
  • Open Access

    ARTICLE

    Semantic Modeling of Events Using Linked Open Data

    Sehrish Jamil1, Salma Noor1,*, Iftikhar Ahmed2, Neelam Gohar1, Fouzia1

    Intelligent Automation & Soft Computing, Vol.29, No.2, pp. 511-524, 2021, DOI:10.32604/iasc.2021.017770 - 16 June 2021

    Abstract Significant happenings in terms of spatio-temporal factors are called events. In the digital age, these events and their associated features are scattered in various databases on the Internet. The event data are in heterogeneous formats, which are often not machine-readable. This leads to a lack of unification of event-related knowledge across different domains and results in a research gap in terms of event modeling and representation. Specialized event models are needed to overcome this gap and integrate relevant information of different similar events occurring worldwide. Our research explores the problem of heterogeneity in specialized event… More >

  • Open Access

    ARTICLE

    A Semantic Supervision Method for Abstractive Summarization

    Sunqiang Hu1, Xiaoyu Li1, Yu Deng1,*, Yu Peng1, Bin Lin2, Shan Yang3

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 145-158, 2021, DOI:10.32604/cmc.2021.017441 - 04 June 2021

    Abstract In recent years, many text summarization models based on pre-training methods have achieved very good results. However, in these text summarization models, semantic deviations are easy to occur between the original input representation and the representation that passed multi-layer encoder, which may result in inconsistencies between the generated summary and the source text content. The Bidirectional Encoder Representations from Transformers (BERT) improves the performance of many tasks in Natural Language Processing (NLP). Although BERT has a strong capability to encode context, it lacks the fine-grained semantic representation. To solve these two problems, we proposed a… More >

  • Open Access

    ARTICLE

    3D Semantic Deep Learning Networks for Leukemia Detection

    Javaria Amin1, Muhammad Sharif2, Muhammad Almas Anjum3, Ayesha Siddiqa1, Seifedine Kadry4, Yunyoung Nam5,*, Mudassar Raza2

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 785-799, 2021, DOI:10.32604/cmc.2021.015249 - 04 June 2021

    Abstract White blood cells (WBCs) are a vital part of the immune system that protect the body from different types of bacteria and viruses. Abnormal cell growth destroys the body’s immune system, and computerized methods play a vital role in detecting abnormalities at the initial stage. In this research, a deep learning technique is proposed for the detection of leukemia. The proposed methodology consists of three phases. Phase I uses an open neural network exchange (ONNX) and YOLOv2 to localize WBCs. The localized images are passed to Phase II, in which 3D-segmentation is performed using deeplabv3 More >

  • Open Access

    ARTICLE

    Chinese Q&A Community Medical Entity Recognition with Character-Level Features and Self-Attention Mechanism

    Pu Han1,2, Mingtao Zhang1, Jin Shi3, Jinming Yang4, Xiaoyan Li5,*

    Intelligent Automation & Soft Computing, Vol.29, No.1, pp. 55-72, 2021, DOI:10.32604/iasc.2021.017021 - 12 May 2021

    Abstract With the rapid development of Internet, the medical Q&A community has become an important channel for people to obtain and share medical and health knowledge. Online medical entity recognition (OMER), as the foundation of medical and health information extraction, has attracted extensive attention of researchers in recent years. In order to further improve the research progress of Chinese OMER, LSTM-Att-Med model is proposed in this paper to capture more external semantic features and important information. First, Word2vec is used to generate the character-level vectors with semantic features on the basis of the unlabeled corpus in the… More >

  • Open Access

    ARTICLE

    Semantic Link Network Based Knowledge Graph Representation and Construction

    Weiyu Guo1,*, Ruixiang Jia1, Ying Zhang2

    Journal on Artificial Intelligence, Vol.3, No.2, pp. 73-79, 2021, DOI:10.32604/jai.2021.018648 - 08 May 2021

    Abstract A knowledge graph consists of a set of interconnected typed entities and their attributes, which shows a better performance to organize, manage and understand knowledge. However, because knowledge graphs contain a lot of knowledge triples, it is difficult to directly display to researchers. Semantic Link Network is an attempt, and it can deal with the construction, representation and reasoning of semantics naturally. Based on the Semantic Link Network, this paper explores the representation and construction of knowledge graph, and develops an academic knowledge graph prototype system to realize the representation, construction and visualization of knowledge More >

  • Open Access

    ARTICLE

    An Automated System to Predict Popular Cybersecurity News Using Document Embeddings

    Ramsha Saeed1, Saddaf Rubab1, Sara Asif1, Malik M. Khan1, Saeed Murtaza1, Seifedine Kadry2, Yunyoung Nam3,*, Muhammad Attique Khan4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 533-547, 2021, DOI:10.32604/cmes.2021.014355 - 19 April 2021

    Abstract The substantial competition among the news industries puts editors under the pressure of posting news articles which are likely to gain more user attention. Anticipating the popularity of news articles can help the editorial teams in making decisions about posting a news article. Article similarity extracted from the articles posted within a small period of time is found to be a useful feature in existing popularity prediction approaches. This work proposes a new approach to estimate the popularity of news articles by adding semantics in the article similarity based approach of popularity estimation. A semantically More >

  • Open Access

    ARTICLE

    A Data-Semantic-Conflict-Based Multi-Truth Discovery Algorithm for a Programming Site

    Haitao Xu1, Haiwang Zhang1, Qianqian Li1, Tao Qin2,*, Zhen Zhang3

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2681-2691, 2021, DOI:10.32604/cmc.2021.016188 - 13 April 2021

    Abstract With the extensive application of software collaborative development technology, the processing of code data generated in programming scenes has become a research hotspot. In the collaborative programming process, different users can submit code in a distributed way. The consistency of code grammar can be achieved by syntax constraints. However, when different users work on the same code in semantic development programming practices, the development factors of different users will inevitably lead to the problem of data semantic conflict. In this paper, the characteristics of code segment data in a programming scene are considered. The code… More >

  • Open Access

    ARTICLE

    Using Semantic Web Technologies to Improve the Extract Transform Load Model

    Amena Mahmoud1,*, Mahmoud Y. Shams2, O. M. Elzeki3, Nancy Awadallah Awad4

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2711-2726, 2021, DOI:10.32604/cmc.2021.015293 - 13 April 2021

    Abstract Semantic Web (SW) provides new opportunities for the study and application of big data, massive ranges of data sets in varied formats from multiple sources. Related studies focus on potential SW technologies for resolving big data problems, such as structurally and semantically heterogeneous data that result from the variety of data formats (structured, semi-structured, numeric, unstructured text data, email, video, audio, stock ticker). SW offers information semantically both for people and machines to retain the vast volume of data and provide a meaningful output of unstructured data. In the current research, we implement a new… More >

  • Open Access

    ARTICLE

    Diagnosis of COVID-19 Infection Using Three-Dimensional Semantic Segmentation and Classification of Computed Tomography Images

    Javaria Amin1, Muhammad Sharif2, Muhammad Almas Anjum3, Yunyoung Nam4,*, Seifedine Kadry5, David Taniar6

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2451-2467, 2021, DOI:10.32604/cmc.2021.014199 - 13 April 2021

    Abstract Coronavirus 19 (COVID-19) can cause severe pneumonia that may be fatal. Correct diagnosis is essential. Computed tomography (CT) usefully detects symptoms of COVID-19 infection. In this retrospective study, we present an improved framework for detection of COVID-19 infection on CT images; the steps include pre-processing, segmentation, feature extraction/fusion/selection, and classification. In the pre-processing phase, a Gabor wavelet filter is applied to enhance image intensities. A marker-based, watershed controlled approach with thresholding is used to isolate the lung region. In the segmentation phase, COVID-19 lesions are segmented using an encoder-/decoder-based deep learning model in which deepLabv3… More >

  • Open Access

    ARTICLE

    Leverage External Knowledge and Self-attention for Chinese Semantic Dependency Graph Parsing

    Dianqing Liu1,2, Lanqiu Zhang1,2, Yanqiu Shao1,2,*, Junzhao Sun3

    Intelligent Automation & Soft Computing, Vol.28, No.2, pp. 447-458, 2021, DOI:10.32604/iasc.2021.016320 - 01 April 2021

    Abstract Chinese semantic dependency graph (CSDG) parsing aims to analyze the semantic relationship between words in a sentence. Since it is a deep semantic analysis task, the parser needs a lot of prior knowledge about the real world to distinguish different semantic roles and determine the range of the head nodes of each word. Existing CSDG parsers usually use part-of-speech (POS) and lexical features, which can only provide linguistic knowledge, but not semantic knowledge about the word. To solve this problem, we propose an entity recognition method based on distant supervision and entity classification to recognize… More >

Displaying 141-150 on page 15 of 181. Per Page