Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    Improved Ant Lion Optimizer with Deep Learning Driven Arabic Hate Speech Detection

    Abdelwahed Motwakel1,*, Badriyya B. Al-onazi2, Jaber S. Alzahrani3, Sana Alazwari4, Mahmoud Othman5, Abu Sarwar Zamani1, Ishfaq Yaseen1, Amgad Atta Abdelmageed1

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3321-3338, 2023, DOI:10.32604/csse.2023.033901

    Abstract Arabic is the world’s first language, categorized by its rich and complicated grammatical formats. Furthermore, the Arabic morphology can be perplexing because nearly 10,000 roots and 900 patterns were the basis for verbs and nouns. The Arabic language consists of distinct variations utilized in a community and particular situations. Social media sites are a medium for expressing opinions and social phenomena like racism, hatred, offensive language, and all kinds of verbal violence. Such conduct does not impact particular nations, communities, or groups only, extending beyond such areas into people’s everyday lives. This study introduces an Improved Ant Lion Optimizer with… More >

  • Open Access

    ARTICLE

    An Influence Maximization Algorithm Based on Improved K-Shell in Temporal Social Networks

    Wenlong Zhu1,*, Yu Miao1, Shuangshuang Yang2, Zuozheng Lian1, Lianhe Cui1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3111-3131, 2023, DOI:10.32604/cmc.2023.036159

    Abstract Influence maximization of temporal social networks (IMT) is a problem that aims to find the most influential set of nodes in the temporal network so that their information can be the most widely spread. To solve the IMT problem, we propose an influence maximization algorithm based on an improved K-shell method, namely improved K-shell in temporal social networks (KT). The algorithm takes into account the global and local structures of temporal social networks. First, to obtain the kernel value Ks of each node, in the global scope, it layers the network according to the temporal characteristic of nodes by improving… More >

  • Open Access

    ARTICLE

    Generalized Jaccard Similarity Based Recurrent DNN for Virtualizing Social Network Communities

    R. Gnanakumari1,*, P. Vijayalakshmi2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2719-2730, 2023, DOI:10.32604/iasc.2023.034145

    Abstract In social data analytics, Virtual Community (VC) detection is a primary challenge in discovering user relationships and enhancing social recommendations. VC formation is used for personal interaction between communities. But the usual methods didn’t find the Suspicious Behaviour (SB) needed to make a VC. The Generalized Jaccard Suspicious Behavior Similarity-based Recurrent Deep Neural Network Classification and Ranking (GJSBS-RDNNCR) Model addresses these issues. The GJSBS-RDNNCR model comprises four layers for VC formation in Social Networks (SN). In the GJSBS-RDNNCR model, the SN is given as an input at the input layer. After that, the User’s Behaviors (UB) are extracted in the… More >

  • Open Access

    ARTICLE

    Machine Learning Techniques for Detecting Phishing URL Attacks

    Diana T. Mosa1,2, Mahmoud Y. Shams3,*, Amr A. Abohany2, El-Sayed M. El-kenawy4, M. Thabet5

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1271-1290, 2023, DOI:10.32604/cmc.2023.036422

    Abstract Cyber Attacks are critical and destructive to all industry sectors. They affect social engineering by allowing unapproved access to a Personal Computer (PC) that breaks the corrupted system and threatens humans. The defense of security requires understanding the nature of Cyber Attacks, so prevention becomes easy and accurate by acquiring sufficient knowledge about various features of Cyber Attacks. Cyber-Security proposes appropriate actions that can handle and block attacks. A phishing attack is one of the cybercrimes in which users follow a link to illegal websites that will persuade them to divulge their private information. One of the online security challenges… More >

  • Open Access

    ARTICLE

    Spotted Hyena Optimizer with Deep Learning Driven Cybersecurity for Social Networks

    Anwer Mustafa Hilal1,2,*, Aisha Hassan Abdalla Hashim1, Heba G. Mohamed3, Lubna A. Alharbi4, Mohamed K. Nour5, Abdullah Mohamed6, Ahmed S. Almasoud7, Abdelwahed Motwakel2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2033-2047, 2023, DOI:10.32604/csse.2023.031181

    Abstract Recent developments on Internet and social networking have led to the growth of aggressive language and hate speech. Online provocation, abuses, and attacks are widely termed cyberbullying (CB). The massive quantity of user generated content makes it difficult to recognize CB. Current advancements in machine learning (ML), deep learning (DL), and natural language processing (NLP) tools enable to detect and classify CB in social networks. In this view, this study introduces a spotted hyena optimizer with deep learning driven cybersecurity (SHODLCS) model for OSN. The presented SHODLCS model intends to accomplish cybersecurity from the identification of CB in the OSN.… More >

  • Open Access

    ARTICLE

    Big Data Analytics Using Graph Signal Processing

    Farhan Amin1, Omar M. Barukab2, Gyu Sang Choi1,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 489-502, 2023, DOI:10.32604/cmc.2023.030615

    Abstract The networks are fundamental to our modern world and they appear throughout science and society. Access to a massive amount of data presents a unique opportunity to the researcher’s community. As networks grow in size the complexity increases and our ability to analyze them using the current state of the art is at severe risk of failing to keep pace. Therefore, this paper initiates a discussion on graph signal processing for large-scale data analysis. We first provide a comprehensive overview of core ideas in Graph signal processing (GSP) and their connection to conventional digital signal processing (DSP). We then summarize… More >

  • Open Access

    ARTICLE

    Model for Generating Scale-Free Artificial Social Networks Using Small-World Networks

    Farhan Amin, Gyu Sang Choi*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6367-6391, 2022, DOI:10.32604/cmc.2022.029927

    Abstract The Internet of Things (IoT) has the potential to be applied to social networks due to innovative characteristics and sophisticated solutions that challenge traditional uses. Social network analysis (SNA) is a good example that has recently gained a lot of scientific attention. It has its roots in social and economic research, as well as the evaluation of network science, such as graph theory. Scientists in this area have subverted predefined theories, offering revolutionary ones regarding interconnected networks, and they have highlighted the mystery of six degrees of separation with confirmation of the small-world phenomenon. The motivation of this study is… More >

  • Open Access

    ARTICLE

    A Parallel Approach for Sentiment Analysis on Social Networks Using Spark

    M. Mohamed Iqbal1,*, K. Latha2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1831-1842, 2023, DOI:10.32604/iasc.2023.029036

    Abstract The public is increasingly using social media platforms such as Twitter and Facebook to express their views on a variety of topics. As a result, social media has emerged as the most effective and largest open source for obtaining public opinion. Single node computational methods are inefficient for sentiment analysis on such large datasets. Supercomputers or parallel or distributed processing are two options for dealing with such large amounts of data. Most parallel programming frameworks, such as MPI (Message Processing Interface), are difficult to use and scale in environments where supercomputers are expensive. Using the Apache Spark Parallel Model, this… More >

  • Open Access

    ARTICLE

    SAFT-VNDN: A Socially-Aware Forwarding Technique in Vehicular Named Data Networking

    Amel Boudelaa1, Zohra Abdelhafidi1, Nasreddine Lagraa1, Chaker Abdelaziz Kerrache1, Muhammad Bilal2, Daehan Kwak3,*, Mohamed Bachir Yagoubi1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2495-2512, 2022, DOI:10.32604/cmc.2022.028619

    Abstract Vehicular Social Networks (VSNs) is the bridge of social networks and Vehicular Ad-Hoc Networks (VANETs). VSNs are promising as they allow the exchange of various types of contents in large-scale through Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication protocols. Vehicular Named Data Networking (VNDN) is an auspicious communication paradigm for the challenging VSN environment since it can optimize content dissemination by decoupling contents from their physical locations. However, content dissemination and caching represent crucial challenges in VSNs due to short link lifetime and intermittent connectivity caused by vehicles’ high mobility. Our aim with this paper is to improve content delivery and… More >

  • Open Access

    ARTICLE

    Glowworm Optimization with Deep Learning Enabled Cybersecurity in Social Networks

    Ashit Kumar Dutta1,*, Basit Qureshi2, Yasser Albagory3, Majed Alsanea4, Anas Waleed AbulFaraj5, Abdul Rahaman Wahab Sait6

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 2097-2110, 2022, DOI:10.32604/iasc.2022.027500

    Abstract Recently, the exponential utilization of Internet has posed several cybersecurity issues in social networks. Particularly, cyberbulling becomes a common threat to users in real time environment. Automated detection and classification of cyberbullying in social networks become an essential task, which can be derived by the use of machine learning (ML) and deep learning (DL) approaches. Since the hyperparameters of the DL model are important for optimal outcomes, appropriate tuning strategy becomes important by the use of metaheuristic optimization algorithms. In this study, an effective glowworm swarm optimization (GSO) with deep neural network (DNN) model named EGSO-DNN is derived for cybersecurity… More >

Displaying 1-10 on page 1 of 25. Per Page  

Share Link