Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (79)
  • Open Access

    ARTICLE

    Social Network Rumor Recognition Based on Enhanced Naive Bayes

    Lei Guo*

    Journal of New Media, Vol.3, No.3, pp. 99-107, 2021, DOI:10.32604/jnm.2021.019649 - 13 July 2021

    Abstract In recent years, with the increasing popularity of social networks, rumors have become more common. At present, the solution to rumors in social networks is mainly through media censorship and manual reporting, but this method requires a lot of manpower and material resources, and the cost is relatively high. Therefore, research on the characteristics of rumors and automatic identification and classification of network message text is of great significance. This paper uses the Naive Bayes algorithm combined with Laplacian smoothing to identify rumors in social network texts. The first is to segment the text and More >

  • Open Access

    ARTICLE

    Research on Feature Extraction Method of Social Network Text

    Zheng Zhang*, Shu Zhou

    Journal of New Media, Vol.3, No.2, pp. 73-80, 2021, DOI:10.32604/jnm.2021.018923 - 23 April 2021

    Abstract The development of various applications based on social network text is in full swing. Studying text features and classifications is of great value to extract important information. This paper mainly introduces the common feature selection algorithms and feature representation methods, and introduces the basic principles, advantages and disadvantages of SVM and KNN, and the evaluation indexes of classification algorithms. In the aspect of mutual information feature selection function, it describes its processing flow, shortcomings and optimization improvements. In view of its weakness in not balancing the positive and negative correlation characteristics, a balance weight attribute More >

  • Open Access

    ARTICLE

    Machine Learning Approach for COVID-19 Detection on Twitter

    Samina Amin1,*, M. Irfan Uddin1, Heyam H. Al-Baity2, M. Ali Zeb1, M. Abrar Khan1

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2231-2247, 2021, DOI:10.32604/cmc.2021.016896 - 13 April 2021

    Abstract Social networking services (SNSs) provide massive data that can be a very influential source of information during pandemic outbreaks. This study shows that social media analysis can be used as a crisis detector (e.g., understanding the sentiment of social media users regarding various pandemic outbreaks). The novel Coronavirus Disease-19 (COVID-19), commonly known as coronavirus, has affected everyone worldwide in 2020. Streaming Twitter data have revealed the status of the COVID-19 outbreak in the most affected regions. This study focuses on identifying COVID-19 patients using tweets without requiring medical records to find the COVID-19 pandemic in… More >

  • Open Access

    ARTICLE

    Detecting Information on the Spread of Dengue on Twitter Using Artificial Neural Networks

    Samina Amin1,*, M. Irfan Uddin1, M. Ali Zeb1, Ala Abdulsalam Alarood2, Marwan Mahmoud3, Monagi H. Alkinani4

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 1317-1332, 2021, DOI:10.32604/cmc.2021.014733 - 12 January 2021

    Abstract Social media platforms have lately emerged as a promising tool for predicting the outbreak of epidemics by analyzing information on them with the help of machine learning techniques. Many analytical and statistical models are available to infer a variety of user sentiments in posts on social media. The amount of data generated by social media platforms, such as Twitter, that can be used to track diseases is increasing rapidly. This paper proposes a method for the classification of tweets related to the outbreak of dengue using machine learning algorithms. An artificial neural network (ANN)-based method… More >

  • Open Access

    ARTICLE

    An AIoT Monitoring System for Multi-Object Tracking and Alerting

    Wonseok Jung1, Se-Han Kim2, Seng-Phil Hong3, Jeongwook Seo4,*

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 337-348, 2021, DOI:10.32604/cmc.2021.014561 - 12 January 2021

    Abstract Pig farmers want to have an effective solution for automatically detecting and tracking multiple pigs and alerting their conditions in order to recognize disease risk factors quickly. In this paper, therefore, we propose a novel monitoring system using an Artificial Intelligence of Things (AIoT) technique combining artificial intelligence and Internet of Things (IoT). The proposed system consists of AIoT edge devices and a central monitoring server. First, an AIoT edge device extracts video frame images from a CCTV camera installed in a pig pen by a frame extraction method, detects multiple pigs in the images More >

  • Open Access

    ARTICLE

    A Novel Collective User Web Behavior Simulation Method

    Hongri Liu1,2,3, Xu Zhang1,3, Jingjing Li1,3, Bailing Wang1,3,*

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2539-2553, 2021, DOI:10.32604/cmc.2021.012213 - 28 December 2020

    Abstract

    A collective user web behavior simulation is an import means for generating a large-scale user network behavior in a network testbed or cyber range. Existing studies almost focus on individual web behavior analysis and prediction, which cannot simulate human dynamics that widely exist in large-scale users’ behaviors. To address these issues, we propose a novel collective user web behavior simulation method, in which an algorithm for constructing a connected virtual social network is proposed, and then a collective user web behavior simulation algorithm is designed on the virtual social network. In the simulation method, a

    More >

  • Open Access

    ARTICLE

    An Emotion Analysis Method Using Multi-Channel Convolution Neural Network in Social Networks

    Xinxin Lu1,*, Hong Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 281-297, 2020, DOI:10.32604/cmes.2020.010948 - 18 September 2020

    Abstract As an interdisciplinary comprehensive subject involving multidisciplinary knowledge, emotional analysis has become a hot topic in psychology, health medicine and computer science. It has a high comprehensive and practical application value. Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research. The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period, so as to understand their normal state, abnormal state and the reason of state change from… More >

  • Open Access

    ARTICLE

    Research on Prediction Methods of Prevalence Perception under Information Exposure

    Weijin Jiang1, 2, 3, 4, Fang Ye1, 2, *, Wei Liu2, 3, Xiaoliang Liu1, 2, Guo Liang5, Yuhui Xu2, 3, Lina Tan1, 2

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2263-2275, 2020, DOI:10.32604/cmc.2020.010082 - 16 September 2020

    Abstract With the rapid development of information technology, the explosive growth of data information has become a common challenge and opportunity. Social network services represented by WeChat, Weibo and Twitter, drive a large amount of information due to the continuous spread, evolution and emergence of users through these platforms. The dynamic modeling, analysis, and network information prediction, has very important research and application value, and plays a very important role in the discovery of popular events, personalized information recommendation, and early warning of bad information. For these reasons, this paper proposes an adaptive prediction algorithm for More >

  • Open Access

    ARTICLE

    Semi-GSGCN: Social Robot Detection Research with Graph Neural Network

    Xiujuan Wang1, Qianqian Zheng1, *, Kangfeng Zheng2, Yi Sui1, Jiayue Zhang1

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 617-638, 2020, DOI:10.32604/cmc.2020.011165 - 23 July 2020

    Abstract Malicious social robots are the disseminators of malicious information on social networks, which seriously affect information security and network environments. Efficient and reliable classification of social robots is crucial for detecting information manipulation in social networks. Supervised classification based on manual feature extraction has been widely used in social robot detection. However, these methods not only involve the privacy of users but also ignore hidden feature information, especially the graph feature, and the label utilization rate of semi-supervised algorithms is low. Aiming at the problems of shallow feature extraction and low label utilization rate in… More >

  • Open Access

    ARTICLE

    Influence Diffusion Model in Multiplex Networks

    Senbo Chen1, 3, *, Wenan Tan1, 2

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 345-358, 2020, DOI:10.32604/cmc.2020.09807 - 20 May 2020

    Abstract The problem of influence maximizing in social networks refers to obtaining a set of nodes of a specified size under a specific propagation model so that the aggregation of the node-set in the network has the greatest influence. Up to now, most of the research has tended to focus on monolayer network rather than on multiplex networks. But in the real world, most individuals usually exist in multiplex networks. Multiplex networks are substantially different as compared with those of a monolayer network. In this paper, we integrate the multi-relationship of agents in multiplex networks by… More >

Displaying 51-60 on page 6 of 79. Per Page