Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access

    ARTICLE

    Optimal Deep Learning-based Cyberattack Detection and Classification Technique on Social Networks

    Amani Abdulrahman Albraikan1, Siwar Ben Haj Hassine2, Suliman Mohamed Fati3, Fahd N. Al-Wesabi2,4, Anwer Mustafa Hilal5,*, Abdelwahed Motwakel5, Manar Ahmed Hamza5, Mesfer Al Duhayyim6

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 907-923, 2022, DOI:10.32604/cmc.2022.024488 - 24 February 2022

    Abstract Cyberbullying (CB) is a distressing online behavior that disturbs mental health significantly. Earlier studies have employed statistical and Machine Learning (ML) techniques for CB detection. With this motivation, the current paper presents an Optimal Deep Learning-based Cyberbullying Detection and Classification (ODL-CDC) technique for CB detection in social networks. The proposed ODL-CDC technique involves different processes such as pre-processing, prediction, and hyperparameter optimization. In addition, GloVe approach is employed in the generation of word embedding. Besides, the pre-processed data is fed into Bidirectional Gated Recurrent Neural Network (BiGRNN) model for prediction. Moreover, hyperparameter tuning of BiGRNN More >

  • Open Access

    ARTICLE

    A Secure Three-Party Authenticated Key Exchange Protocol for Social Networks

    Vivek Kumar Sinha1, Divya Anand1,*, Fahd S. Alharithi2, Ahmed H. Almulihi2

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 6293-6305, 2022, DOI:10.32604/cmc.2022.024877 - 14 January 2022

    Abstract The 3PAKE (Three-Party Authenticated Key Exchange) protocol is a valuable cryptographic method that offers safe communication and permits two diverse parties to consent to a new safe meeting code using the trusted server. There have been explored numerous 3PAKE protocols earlier to create a protected meeting code between users employing the trusted server. However, existing modified 3PAKE protocols have numerous drawbacks and are incapable to provide desired secrecy against diverse attacks such as man-in-the-middle, brute-force attacks, and many others in social networks. In this article, the authors proposed an improved as well as safe 3PAKE… More >

  • Open Access

    ARTICLE

    Social Networks Fake Account and Fake News Identification with Reliable Deep Learning

    N. Kanagavalli1,*, S. Baghavathi Priya2

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 191-205, 2022, DOI:10.32604/iasc.2022.022720 - 05 January 2022

    Abstract Recent developments of the World Wide Web (WWW) and social networking (Twitter, Instagram, etc.) paves way for data sharing which has never been observed in the human history before. A major security issue in this network is the creation of fake accounts. In addition, the automatic classification of the text article as true or fake is also a crucial process. The ineffectiveness of humans in distinguishing the true and false information exposes the fake news as a risk to credibility, democracy, logical truth, and journalism in government sectors. Besides, the automatic fake news or rumors… More >

  • Open Access

    ARTICLE

    Deep Learning Empowered Cybersecurity Spam Bot Detection for Online Social Networks

    Mesfer Al Duhayyim1, Haya Mesfer Alshahrani2, Fahd N. Al-Wesabi3, Mohammed Alamgeer4, Anwer Mustafa Hilal5,*, Mohammed Rizwanullah5

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6257-6270, 2022, DOI:10.32604/cmc.2022.021212 - 11 October 2021

    Abstract Cybersecurity encompasses various elements such as strategies, policies, processes, and techniques to accomplish availability, confidentiality, and integrity of resource processing, network, software, and data from attacks. In this scenario, the rising popularity of Online Social Networks (OSN) is under threat from spammers for which effective spam bot detection approaches should be developed. Earlier studies have developed different approaches for the detection of spam bots in OSN. But those techniques primarily concentrated on hand-crafted features to capture the features of malicious users while the application of Deep Learning (DL) models needs to be explored. With this… More >

  • Open Access

    ARTICLE

    Graph Transformer for Communities Detection in Social Networks

    G. Naga Chandrika1, Khalid Alnowibet2, K. Sandeep Kautish3, E. Sreenivasa Reddy4, Adel F. Alrasheedi2, Ali Wagdy Mohamed5,6,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5707-5720, 2022, DOI:10.32604/cmc.2022.021186 - 11 October 2021

    Abstract Graphs are used in various disciplines such as telecommunication, biological networks, as well as social networks. In large-scale networks, it is challenging to detect the communities by learning the distinct properties of the graph. As deep learning has made contributions in a variety of domains, we try to use deep learning techniques to mine the knowledge from large-scale graph networks. In this paper, we aim to provide a strategy for detecting communities using deep autoencoders and obtain generic neural attention to graphs. The advantages of neural attention are widely seen in the field of NLP… More >

  • Open Access

    ARTICLE

    CGraM: Enhanced Algorithm for Community Detection in Social Networks

    Kalaichelvi Nallusamy*, K. S. Easwarakumar

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 749-765, 2022, DOI:10.32604/iasc.2022.020189 - 22 September 2021

    Abstract Community Detection is used to discover a non-trivial organization of the network and to extract the special relations among the nodes which can help in understanding the structure and the function of the networks. However, community detection in social networks is a vast and challenging task, in terms of detected communities accuracy and computational overheads. In this paper, we propose a new algorithm Enhanced Algorithm for Community Detection in Social Networks – CGraM, for community detection using the graph measures eccentricity, harmonic centrality and modularity. First, the centre nodes are identified by using the eccentricity… More >

  • Open Access

    ARTICLE

    Advanced Community Identification Model for Social Networks

    Farhan Amin1, Jin-Ghoo Choi2, Gyu Sang Choi2,*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1687-1707, 2021, DOI:10.32604/cmc.2021.017870 - 21 July 2021

    Abstract Community detection in social networks is a hard problem because of the size, and the need of a deep understanding of network structure and functions. While several methods with significant effort in this direction have been devised, an outstanding open problem is the unknown number of communities, it is generally believed that the role of influential nodes that are surrounded by neighbors is very important. In addition, the similarity among nodes inside the same cluster is greater than among nodes from other clusters. Lately, the global and local methods of community detection have been getting… More >

  • Open Access

    ARTICLE

    An Emotion Analysis Method Using Multi-Channel Convolution Neural Network in Social Networks

    Xinxin Lu1,*, Hong Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 281-297, 2020, DOI:10.32604/cmes.2020.010948 - 18 September 2020

    Abstract As an interdisciplinary comprehensive subject involving multidisciplinary knowledge, emotional analysis has become a hot topic in psychology, health medicine and computer science. It has a high comprehensive and practical application value. Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research. The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period, so as to understand their normal state, abnormal state and the reason of state change from… More >

  • Open Access

    ARTICLE

    Semi-GSGCN: Social Robot Detection Research with Graph Neural Network

    Xiujuan Wang1, Qianqian Zheng1, *, Kangfeng Zheng2, Yi Sui1, Jiayue Zhang1

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 617-638, 2020, DOI:10.32604/cmc.2020.011165 - 23 July 2020

    Abstract Malicious social robots are the disseminators of malicious information on social networks, which seriously affect information security and network environments. Efficient and reliable classification of social robots is crucial for detecting information manipulation in social networks. Supervised classification based on manual feature extraction has been widely used in social robot detection. However, these methods not only involve the privacy of users but also ignore hidden feature information, especially the graph feature, and the label utilization rate of semi-supervised algorithms is low. Aiming at the problems of shallow feature extraction and low label utilization rate in… More >

  • Open Access

    ARTICLE

    Influence Diffusion Model in Multiplex Networks

    Senbo Chen1, 3, *, Wenan Tan1, 2

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 345-358, 2020, DOI:10.32604/cmc.2020.09807 - 20 May 2020

    Abstract The problem of influence maximizing in social networks refers to obtaining a set of nodes of a specified size under a specific propagation model so that the aggregation of the node-set in the network has the greatest influence. Up to now, most of the research has tended to focus on monolayer network rather than on multiplex networks. But in the real world, most individuals usually exist in multiplex networks. Multiplex networks are substantially different as compared with those of a monolayer network. In this paper, we integrate the multi-relationship of agents in multiplex networks by… More >

Displaying 21-30 on page 3 of 33. Per Page