Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,281)
  • Open Access

    ARTICLE

    Engineering Nanostructured Probes for Sensitive Intracellular Gene Detection

    Gang Bao1, Andrew Tsourkas2, Philip J. Santangelo2

    Molecular & Cellular Biomechanics, Vol.1, No.1, pp. 23-36, 2004, DOI:10.3970/mcb.2004.001.023

    Abstract The ability to detect, localize, quantify and monitor the expression of specific genes in living cells in real-time will offer unprecedented opportunities for advancement in molecular biology, disease pathophysiology, drug discovery, and medical diagnostics. However, current methods for quantifying gene expression employ either selective amplification (as in PCR) or saturation binding followed by removal of the excess probes (as in microarrays and in situ hybridization) to achieve specificity. Neither approach is applicable when detecting gene transcripts within living cells. Here we review the recent development in engineering nanostructured molecular probes for gene detection in vivo, describe More >

  • Open Access

    ARTICLE

    Computation of Energy Release Rates for Kinking Cracks based on Virtual Crack Closure Technique

    De Xie1, Anthony M. Waas1,2, Khaled W. Shahwan3, Jessica A. Schroeder4, Raymond G. Boeman5

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.6, pp. 515-524, 2004, DOI:10.3970/cmes.2004.006.515

    Abstract A numerical method based on the virtual crack closure technique (VCCT) [Rybicki and Kanninen (1977)] and in conjunction with the finite element (FE) method is presented to compute strain energy release rates for cracks that kink. The method partitions the strain energy release rate and provides an efficient means to compute values of the mode I (GI) and mode II (GII) energy release rate at the tip of a kinking crack. The solution procedure is shown to be computationally efficient and operationally simple, involving only the nodal forces and displacements near the crack tip. Example problems More >

  • Open Access

    ARTICLE

    Boundary Integral-Based Domain Decomposition Technique for Solution of Navier Stokes Equations

    N. Mai-Duy1, T. Tran-Cong2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.1, pp. 59-76, 2004, DOI:10.3970/cmes.2004.006.059

    Abstract This paper presents a new domain decomposition technique based on the use of Boundary Integral Equations (BIEs) for the analysis of viscous flow problems. The domain of interest is divided into a number of non-overlapping subdomains and an iterative procedure is then employed to update the boundary conditions at interfaces. The new feature in the present work is that at each iteration, the relevant two subdomains, together containing a particular interface, are assumed to satisfy the governing BI equations which they do at the end of a convergent iterative process. Hence the boundary conditions on More >

  • Open Access

    ARTICLE

    Application of MBPE Method to Frequency Domain Hybrid Techniques to Compute RCS of Electrically Large Objects

    C. J. Reddy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.5, pp. 455-462, 2004, DOI:10.3970/cmes.2004.005.455

    Abstract This paper presents an efficient algorithm to evaluate multi-spectral and multi-angular monostatic radar cross section (RCS) of large objects with very fine increments. The technique is based on the combination of Model Based Parameter Estimation (MBPE) method with hybrid frequency domain formulations. A general approach to formulation of MBPE is presented along with a similar approach called the Asymptotic Waveform Evaluation (AWE). Various numerical examples are presented for multi-spectral response calculations using method of moments (MoM) and the hybrid Finite Element-MoM technique in conjunction with MBPE. Example application of MBPE for hybrid MoM-Physical Optics approach More >

  • Open Access

    ARTICLE

    The Characteristic Basis Function Method: A New Technique for Fast Solution of Radar Scattering Problems

    Raj Mittra1, V.V.S. Prakash1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.5, pp. 435-442, 2004, DOI:10.3970/cmes.2004.005.435

    Abstract In this paper, we introduce a novel approach for the efficient solution of electromagnetic scattering problems from objects that can be represented in terms of facets. The approach is based on the use of the Characteristic Basis Functions (CBFs), which are high-level basis functions of special types, and whose domains are not bound by the conventional Rao, Wilton and Glisson (RWG) discretization using triangular patches that are typically$\lambda$/10 to$\lambda$/20 in size. In contrast, the CBFs are defined over much larger-size domains, even tens of wavelengths in size, with no limit placed on the dimensions of… More >

  • Open Access

    ARTICLE

    Analysis of Particulate Composite Materials Using an Element Overlay Technique

    H. Okada1, C. T. Liu2, T. Ninomiya1, Y. Fukui1, N. Kumazawa1

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.4, pp. 333-348, 2004, DOI:10.3970/cmes.2004.006.333

    Abstract Formulations and applications of an element overlay technique for the mesoscopic analyses of composite structures are presented in this paper. As a zooming technique, the element overlay technique has been applied to various engineering problems. A finite element mesh having finer mesh discretization is superposed at the region to zoom the spatial resolution of analysis. Such a numerical technique is known as the s-version FEM (S-FEM). This paper aims at developing an S-FEM technique that is suited for the mesoscopic analysis of particulate composite materials. Local finite element models that contain the second phase material… More >

  • Open Access

    ARTICLE

    Atomic Modeling of Carbon-Based Nanostructures as a Tool for Developing New Materials and Technologies

    D.W. Brenner, O.A. Shenderova, D.A. Areshkin, J.D. Schall1, S.-J. V. Frankland2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.5, pp. 643-674, 2002, DOI:10.3970/cmes.2002.003.643

    Abstract The derivation of a bond-order potential energy function and a self-consistent tight-binding scheme is presented, followed by a survey of the application of these methods to calculating properties of carbon nanostructures. The modeling studies discussed include properties of functionalized and kinked carbon nanotubes, Raman shifts for hydrogen stored in nanotubes, nanotubes in a composite, properties of nanotubes in applied potential (electrical) fields, and structures and properties of nanocones, nanodiamond clusters and rods, and hybrid diamond-nanotube structures. More >

  • Open Access

    ARTICLE

    Multiscale Modeling of Laser Ablation: Applications to Nanotechnology

    Leonid V. Zhigilei1, Avinash M. Dongare1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.5, pp. 539-556, 2002, DOI:10.3970/cmes.2002.003.539

    Abstract Computational modeling has a potential of making an important contribution to the advancement of laser-driven methods in nanotechnology. In this paper we discuss two computational schemes developed for simulation of laser coupling to organic materials and metals and present a multiscale model for laser ablation and cluster deposition of nanostructured materials. In the multiscale model the initial stage of laser ablation is reproduced by the classical molecular dynamics (MD) method. For organic materials, the breathing sphere model is used to simulate the primary laser excitations and the vibrational relaxation of excited molecules. For metals, the… More >

  • Open Access

    ARTICLE

    Computational Nanotechnology: A Current Perspective

    Deepak Srivastava1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.5, pp. 531-538, 2002, DOI:10.3970/cmes.2002.003.531

    Abstract The current status of the progress and developments in computational nanotechnology is briefly reviewed, from the perspective of its applications. The enabling tools and techniques of physics- and chemistry-based simulations, within a multi-scale context , are briefly reviewed . More >

  • Open Access

    EDITORIAL

    Virtual Tribology: Integrating Model-Based Simulations with Modern Computation/Information Technologies

    Q. Jane Wang1, Michael D. Bryant2, Leon M. Keer1, Richard F. Salant3

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.4, pp. 417-430, 2002, DOI:10.3970/cmes.2002.003.417

    Abstract This article has no abstract. More >

Displaying 3271-3280 on page 328 of 3281. Per Page