Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (466)
  • Open Access

    ARTICLE

    miR-940 Upregulation Suppresses Cell Proliferation and Induces Apoptosis by Targeting PKC-δ in Ovarian Cancer OVCAR3 Cells

    Fang Wang, Zhihong Wang, Xiaoli Gu, Jinquan Cui

    Oncology Research, Vol.25, No.1, pp. 107-114, 2017, DOI:10.3727/096504016X14732772150145

    Abstract Ovarian cancer remains as one of the most threatening malignancies for females in the world. This study investigated the pivotal role of miR-940 in the progression of ovarian cancer and to reveal the possible molecular mechanism of its action. Ovarian cancer OVCAR3 cells were transfected with the miR-940 vector, miR-940 inhibitor, and/or small interfering RNA (siRNA) targeting PKC-d (si-PKC-δ), respectively. After transfection, cell viability and cell apoptosis were analyzed, as well as cell proliferation and apoptosis-related protein expression. Compared to the control, miR-940 upregulation suppressed cell viability but induced cell apoptosis. miR- 940 upregulation increased… More >

  • Open Access

    ARTICLE

    miR-214-5p Targets ROCK1 and Suppresses Proliferation and Invasion of Human Osteosarcoma Cells

    Minglei Zhang*, Dapeng Wang, Tongtong Zhu*, Ruofeng Yin*

    Oncology Research, Vol.25, No.1, pp. 75-81, 2017, DOI:10.3727/096504016X14719078133401

    Abstract MicroRNAs (miRNAs) are small conserved RNAs regulating specific target genes in posttranscriptional levels. They have been involved in multiple processes of tumor progression, including cell proliferation. miR-214-5p (also miR-214*) is a newly identified miRNA, and its functions are largely unknown. In this study, we explore the role of miR-214-5p in the proliferation and invasion of human osteosarcoma (OS) cells. The results showed that miR-214-5p was sharply reduced in OS tissues and cell lines, compared with normal tissues and cell lines. In addition, the miR-214-5p mimic greatly increased the miR-214-5p level and significantly decreased the proliferation More >

  • Open Access

    ARTICLE

    MicroRNA-200a Suppresses Cell Invasion and Migration by Directly Targeting GAB1 in Hepatocellular Carcinoma

    Jianlin Wang*1, Wenjie Song*1, Weiwei Shen†1, Xisheng Yang*, Wei Sun*, Sshibin Qu*, Runze Shang*, Ben Ma*, Meng Pu*, Kaishan Tao*, Kefeng Dou*, Haimin Li*

    Oncology Research, Vol.25, No.1, pp. 1-10, 2017, DOI:10.3727/096504016X14685034103798

    Abstract MicroRNA-200a (miR-200a) is frequently downregulated in most cancer types and plays an important role in carcinogenesis and cancer progression. In this study, we determined that miR-200a was downregulated in hepatocellular carcinoma (HCC) tissues and cell lines, consistent with the results of our previous study. Because a previous study suggested that downregulation of miR-200a is correlated with HCC metastasis, we aimed to elucidate the mechanism underlying the role of miR-200a in metastasis in HCC. Here we observed that overexpression of miR-200a resulted in suppression of HCC metastatic ability, including HCC cell migration, invasion, and metastasis, in More >

  • Open Access

    ARTICLE

    Stenting the vertical ductus arteriosus via axillary artery access using “wire-target” technique

    Tugcin Bora Polat

    Congenital Heart Disease, Vol.12, No.6, pp. 800-807, 2017, DOI:10.1111/chd.12512

    Abstract Objectives: To retrospectively review the outcome of stent placement in neonates with a vertical ductus, present a technique of ductal stenting via the axillary artery and compare it to ductal stening via the femoral venous access.
    Design: Nineteen patients with duct-dependent pulmonary circulations through a vertical ductus arteriosus were treated with stent implantation. Those patients were retrospectively included in the study. In the first nine of these cases, stent delivery was done transvenously. In the latter ten cases, we favored the axillary artery access to the transvenous approach for stenting the vertical ductus arteriosus. Wire-target technique was… More >

  • Open Access

    ARTICLE

    Numerical investigation of penetration in Ceramic/Aluminum targets using Smoothed particle hydrodynamics method and presenting a modified analytical model

    Ehsan Hedayati1, Mohammad Vahedi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.3, pp. 295-323, 2017, DOI:10.3970/cmes.2017.113.307

    Abstract Radius of ceramic cone can largely contribute into final solution of analytic models of penetration into ceramic/metal targets. In the present research, a modified model based on radius of ceramic cone was presented for ceramic/aluminum targets. In order to investigate and evaluate accuracy of the presented analytic model, obtained results were compared against the results of the Florence’s analytic model and also against numerical modeling results. The phenomenon of impact onto ceramic/aluminum composites were modeled using smoothed particle hydrodynamics (SPH) implemented utilizing ABAQUS Software. Results indicated that, with increasing initial velocity and ceramic thickness and… More >

  • Open Access

    ARTICLE

    Suppressive Role of MicroRNA-148a in Cell Proliferation and Invasion in Ovarian Cancer Through Targeting Transforming Growth Factor-β-Induced 2

    Min Zhao*, Zhiying Su, Shiyang Zhang, Liangjin Zhuang§, Yudi Xie*, Xiaodong Li*

    Oncology Research, Vol.24, No.5, pp. 353-360, 2016, DOI:10.3727/096504016X14685034103275

    Abstract Ovarian cancer (OC) is one of the most common gynecological malignancies. MicroRNAs (miRs) play a crucial role in the development and progression of OC, but the underlying mechanism remains largely unclear. Our study investigated the regulatory role of miR-148a in OC cell proliferation and invasion. We found that miR- 148a was significantly downregulated in OC tissues compared to their matched adjacent nontumor tissues. In addition, its expression was also reduced in OC cell lines (SKOV3, ES-2, OVCAR, and A2780) compared to normal ovarian epithelial cells. Overexpression of miR-148a caused a significant decrease in OC cell… More >

  • Open Access

    REVIEW

    Molecularly Targeted Drugs Plus Radiotherapy and Temozolomide Treatment for Newly Diagnosed Glioblastoma: A Meta-Analysis and Systematic Review

    Jiahao Su*, Meiqin Cai*, Wensheng Li*, Bo Hou, Haiyong He, Cong Ling,Tengchao Huang, Huijiao Liu, Ying Guo*

    Oncology Research, Vol.24, No.2, pp. 117-128, 2016, DOI:10.3727/096504016X14612603423511

    Abstract Glioblastoma (GBM) is the most common primary malignant brain tumor that nearly always results in a bad prognosis. Temozolomide plus radiotherapy (TEM+RAD) is the most common treatment for newly diagnosed GBM. With the development of molecularly targeted drugs, several clinical trials were reported; however, the efficacy of the treatment remains controversial. So we attempted to measure the dose of the molecularly targeted drug that could improve the prognosis of those patients. The appropriate electronic databases (PubMed, MEDLINE, EMBASE, and the Cochrane Library) were searched for relevant studies. A meta-analysis was performed after determining which studies… More >

  • Open Access

    ARTICLE

    miR-34b Targets HSF1 to Suppress Cell Survival in Acute Myeloid Leukemia

    Gangcan Li, Yanping Song, Yunjie Zhang, Hao Wang, Jia Xie

    Oncology Research, Vol.24, No.2, pp. 109-116, 2016, DOI:10.3727/096504016X14611963142254

    Abstract Acute myeloid leukemia (AML) is the most lethal hematological malignancy, and the occurrence of chemoresistance prevents the achievement of complete remission following the standard therapy. MicroRNAs have been extensively investigated as critical regulators of hematopoiesis and leukemogenesis, and they represent a promising strategy for AML therapy. In this study, we identified miR-34b as a novel regulator in myeloid proliferation and apoptosis of leukemic cells. We found that miR-34b was developmentally upregulated in plasma and myeloid cells of healthy subjects, while it was significantly reduced in blood samples of patients with AML and AML cell lines.… More >

  • Open Access

    ARTICLE

    miRNA-497 Negatively Regulates the Growth and Motility of Chondrosarcoma Cells by Targeting Cdc25A

    Yandong Lu*1, Fangguo Li*1, Tao Xu, Jie Sun*1

    Oncology Research, Vol.23, No.4, pp. 155-163, 2015, DOI:10.3727/096504016X14519157902681

    Abstract Chondrosarcoma (CHS) is the second most common malignant bone sarcoma with increased risk of invasion and metastasis. However, the regulatory mechanisms of CHS tumorigenesis remain unknown. Here we investigated the novel role of miR-497 in regulating chondrosarcoma cell growth and cell cycle arrest. RT-PCR analysis showed that the expression of miR-497 is aberrantly downregulated in human chondrosarcoma samples and cells. After transfection with miR-497 mimic or antagomir, the proliferation and apoptosis of JJ012 and OUMS-27 chondrosarcoma cells were determined by CCK-8 assay and flow cytometric analysis, respectively. Results showed that the proliferation capacity of JJ012… More >

  • Open Access

    ARTICLE

    Real-Time Moving Targets Detection in Dynamic Scenes

    Fan Li1, Yang Yang

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.2, pp. 103-124, 2015, DOI:10.3970/cmes.2015.107.103

    Abstract The shift of the camera leads to unsteadiness of backgrounds in video sequences. The motion of camera will results in mixture of backgrounds and foregrounds motion. So it is a challenge for targets detection in dynamic scenes. A realtime moving target detection algorithm with low complexity in dynamic scenes is proposed in this paper. Sub-block based image registration is applied to remove the global motion of the video frame. Considering the blocks in one frame have different motion vectors, the global motion of each block is separately estimated. Then, a neighbor-based background modeling is applied More >

Displaying 451-460 on page 46 of 466. Per Page