Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Mechanical and Thermal Properties of Sugar Palm Fiber Reinforced Thermoplastic Polyurethane Composites: Effect of Silane Treatment and Fiber Loading

    A. Atiqah1, M. Jawaid1,*, S. M. Sapuan1,2, M. R. Ishak3

    Journal of Renewable Materials, Vol.6, No.5, pp. 477-492, 2018, DOI:10.7569/JRM.2017.634188

    Abstract The aim of the present study was to develop sugar palm fiber (SPF) reinforced thermoplastic polyurethane (TPU) composites and to investigate the effects of fiber surface modification by 2% silane treatment and fiber loading (0, 10, 20, 30, 40 and 50 wt%) on the mechanical and thermal properties of the obtained composites. Surface treatment was employed to improve the fiber-matrix interface, which was expected to boost the mechanical strength of the composites, in terms of tensile, flexural and impact properties. Thermal properties were also investigated by thermal gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) to assess the thermal stability… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Interpenetrating Polymer Networks (IPNs) from Acrylated Soybean Oil a-Resorcylic Acid: Part 2. Thermo-Mechanical Properties and Linear Fracture Mechanics

    Bernal Sibaja1,2,3, Camila Pereira Matheus1,2, Ricardo Ballestero Mendez1,2,Ramsis Farag1,2,4, J. R. Vega-Baudrit3, Maria L. Auad*,1,2

    Journal of Renewable Materials, Vol.5, No.3-4, pp. 241-250, 2017, DOI:10.7569/JRM.2017.634114

    Abstract The thermo-mechanical properties and linear fracture mechanics of acrylated soybean oil and the triglycidylated ether of α-resorcylic acid interpenetrated networks as a function of their weight composition are the focus of Part 2 of this article. Thermo-mechanical characterization showed that the obtained materials behave as thermoset amorphous polymers, and that both the modulus and glass transition are extremely dependent on the epoxy/acrylate weight ratio. Modulus values ranged from 0.7 to 3.3 GPa at 30 °C, and glass transition temperatures ranged from around 58 °C to approx. 130 °C. No synergistic effect on these two properties was observed. Interpenetrating networks containing… More >

  • Open Access

    ARTICLE

    Thermo-Mechanical Analysis of Restored Molar Tooth using Finite Element Analysis

    R. V. Uddanwadiker*

    Molecular & Cellular Biomechanics, Vol.10, No.4, pp. 289-302, 2013, DOI:10.3970/mcb.2013.010.289

    Abstract The aim of the study is to find most optimum combination of crown material and adhesive to avoid loosening and thereby failure of restored tooth. This study describes the Thermo-Mechanical analysis of restored molar tooth crown for determination of the stress levels due to thermal and mechanical loads on restored molar tooth. The potential use of the 3-D model was demonstrated and analyzed using different materials for crown. Thermal strain, stress and deformation were measured at hot and cold conditions in ANSYS and correlated with analytical calculation and existing experimental data for model validation and optimization. It is concluded that… More >

  • Open Access

    ARTICLE

    Dynamic Mesh Refining and Iterative Substructure Method for FilletWelding Thermo-Mechanical Analysis

    Hui Huang, Hidekazu Murakawa

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.3, pp. 187-201, 2015, DOI:10.3970/cmes.2015.106.187

    Abstract Dynamic mesh refining method (DMRM) developed previously was extended to multi-level refinement, and employed to perform thermal-mechanical analysis of fillet welding. The DMRM has been successfully incorporated with another efficient technique, the iterative substructure method (ISM) to greatly enhance the computation speed of welding simulation. The basic concept, hierarchical modeling and computation flowchart are described for the proposed method. A flange-to-pipe welding problem has been solved with a commercial code and the novel method to demonstrate its high accuracy and efficiency. Furthermore, the numerical analysis was performed on a large scale stiffened welding structure, and comparison of welding deformation between… More >

  • Open Access

    ARTICLE

    A New Algorithm for the Thermo-Mechanical Coupled Frictional Contact Problem of Polycrystalline Aggregates Based on Plastic Slip Theory

    Yun Chen1, Junzhi Cui2, Yufeng Nie1, Yiqiang Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.76, No.3&4, pp. 189-206, 2011, DOI:10.3970/cmes.2011.076.189

    Abstract This paper presents a new numerical algorithm for thermal-mechanical coupled analysis of polycrystalline aggregates based on the plastic slip theory inside crystals and the frictional contact on their interfaces. It involves the mechanics and heat conduction behaviors caused by both force loads and temperature changing within crystal and contact interfaces between crystals. Firstly, the constitutive relationship inside single crystal, and the moment equations and energy equations are derived by means of rate-dependent plastic deformation theory and the formulation of elastic-plastic tangent modulus depended on temperature. Secondly, the contact conditions with friction, including frictional heat generation and heat transfer across the… More >

  • Open Access

    ARTICLE

    Recent Developments on Thermo-Mechanical Simulations of Ductile Failure by Meshfree Method

    B. Ren1,2, J. Qian1, X. Zeng1, A. K. Jha3, S. Xiao4, S. Li1,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.3, pp. 253-278, 2011, DOI:10.3970/cmes.2011.071.253

    Abstract Ductile failure is a complex multi-scale phenomenon evolved from the micro-voids to macro-crack. There are three main failure mechanisms behinds a ductile failure: adiabatic shear band (ASB), spall fracture, and crack. Since this type of thermo-mechanical phenomena involves large deformation and large scale plastic yielding, a meshfree method has intrinsic advantages in solving this kind of problems over the conventional finite element method. In this paper, the numerical methodologies including multi-physics approach for ASB, parametric visibility condition for crack propagation, and multi-scale approach to determine spall strength in simulating ductile failure have been reviewed. A thermo-mechanical coupling algorithm is proposed… More >

  • Open Access

    ARTICLE

    Concurrent Atomistic/Continuum Simulation of Thermo-Mechanical Coupling Phenomena

    Xianqiao Wang1, James D. Lee1

    CMES-Computer Modeling in Engineering & Sciences, Vol.62, No.2, pp. 150-170, 2010, DOI:10.3970/cmes.2010.062.150

    Abstract The concurrent methods for coupling molecular dynamics with continuum thermodynamics offer a myriad of challenging problems, mostly related with energy transmission, wave reflection, and damage propagation at the interfaces between the continuum description and the discrete description. In this work, by virtue of the atomistic field theory (AFT), we present an analysis to reconcile the compatibility between atomic region and continuum region and to calculate the matching temperature field of a heat conduction problem in a concurrent atomistic/continuum system. First, formulation of AFT with finite temperature and its corresponding finite element implementation are briefly introduced. Then we develop a new… More >

  • Open Access

    ARTICLE

    Coupled Thermo-Mechanical Analysis of One-Layered and Multilayered Isotropic and Composite Shells

    S. Brischetto1, E. Carrera2

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.3, pp. 249-302, 2010, DOI:10.3970/cmes.2010.056.249

    Abstract This work considers the fully coupled thermo-mechanical analysis of one-layered and multilayered isotropic and composite shells. The temperature is assumed a primary variable as the displacement; it is therefore directly obtained from the model and this feature permits the temperature field to be evaluated through the thickness direction. Three problems are analyzed: - static analysis of shells with imposed temperature on the external surfaces; - static analysis of shells subjected to a mechanical load, with the possibility of considering the temperature field effects; - a free vibration problem, with the evaluation of the temperature field effects. In the first problem,… More >

  • Open Access

    ARTICLE

    Estimation of thermo-elasto-plastic properties of thin-film mechanical properties using MD nanoindentation simulations and an inverse FEM/ANN computational scheme

    D. S. Liu1, C.Y. Tsai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.39, No.1, pp. 29-48, 2009, DOI:10.3970/cmes.2009.039.029

    Abstract Utilizing a thin copper substrate for illustration purposes, this study presents a novel numerical method for extracting the thermo-mechanical properties of a thin-film. In the proposed approach, molecular dynamics (MD) simulations are performed to establish the load-displacement response of a thin copper substrate nanoindented at temperatures ranging from 300~1400 K. The load data are then input to an artificial neural network (ANN), trained using a finite element model (FEM), in order to extract the material constants of the copper substrate. The material constants are then used to construct the corresponding stress-strain curve, from which the elastic modulus and the plastic… More >

  • Open Access

    ARTICLE

    A Coupled Thermo-Mechanical Model for Simulating the Material Failure Evolution Due to Localized Heating

    Z. Chen1,2, Y. Gan1, J.K. Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.2, pp. 123-138, 2008, DOI:10.3970/cmes.2008.026.123

    Abstract A coupled thermo-mechanical constitutive model with decohesion is proposed to simulate the material failure evolution due to localized heating. A discontinuous bifurcation analysis is performed based on a thermoviscoplasticity relation to identify the transition from continuous to discontinuous failure modes as well as the orientation of the discontinuous failure. The thermo-mechanical model is then implemented within the framework of the Material Point Method (MPM) so that the different gradient and divergence operators in the governing differential equations could be discretized in a single computational domain and that continuous remeshing is not required with the evolution of failure. The proposed model-based… More >

Displaying 11-20 on page 2 of 23. Per Page