Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access



    N. Vijayaa,*, Sunil Babu Gb , Vellanki Lakshmi Nc

    Frontiers in Heat and Mass Transfer, Vol.15, No.1, pp. 1-8, 2020, DOI:10.5098/hmt.15.23

    Abstract Present investigation aims at scrutinizing the properties of heat and mass transfer phenomena of liquid thin film of Casson Nano fluid over elongated sheet under the influence of thermophorosis and Brownian motion. Casson Nano particle effect on thermophorotic force and on Brownian force is studied. Variables of similarity were induced to transmute partial differential equations into dimensionless equations and are resolved numerically by elegant method bvp 4c. Thin film thickness is calculated using MATHEMATICA for different values of critical parameters. Velocity profiles diminishes for higher values of Casson parameter and magnetic field parameter. The temperature escalates for higher values of… More >

  • Open Access


    Hydromagnetic Nanofluid Film Flow over a Stretching Sheet with Prescribed Heat Flux and Viscous Dissipation

    Nourhan I. Ghoneim1,*, Ahmed M. Megahed2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1373-1388, 2022, DOI:10.32604/fdmp.2022.020509

    Abstract Thermal radiative heat transfer through a thin horizontal liquid film of a Newtonian nanofluid subjected to a magnetic field is considered. The physical boundary conditions are a variable surface heat flux and a uniform concentration along the sheet. Moreover, viscous dissipation is present and concentration is assumed to be influenced by both thermophoresis and Brownian motion effects. Using a similarity method to turn the underlying Partial differential equations into a set of ordinary differential equations (ODEs) and a shooting technique to solve these equations, the skin-friction coefficient, the Nusselt number, and the Sherwood number are determined. Among other things, it… More >

  • Open Access


    Hydrogenated Amorphous Carbon Films from Palmyra Sugar

    Budhi Priyanto1,2,*, Retno Asih1, Irma Septi Ardiani1, Anna Zakiyatul Laila1, Khoirotun Nadiyyah1, Bima Romadhon3, Sarayut Tunmee4, Hideki Nakajima4, Triwikantoro1, Yoyok Cahyono1, Darminto1,*

    Journal of Renewable Materials, Vol.9, No.6, pp. 1087-1098, 2021, DOI:10.32604/jrm.2021.014466

    Abstract A simple, highly reproducible, and environmentally friendly method is a considered approach in generating renewable energy materials. Here, hydrogenated amorphous carbon (a-C) films have been successfully prepared from palmyra liquid sugar, employing spin-coating and spraying methods. Compared with the former method, the latter shows a significance in producing a better homogeneity in particle size and film thickness. The obtained films have a thickness of approximately 1000 to 100 nm and contain an sp2 hexagonal structure (~70%) and sp3 tetrahedral configuration (~30%) of carbons. The introduction of boron (B) and nitrogen (N) as dopants has created the local structural modification of… More > Graphic Abstract

    Hydrogenated Amorphous Carbon Films from Palmyra Sugar

  • Open Access


    Hybrid Metamodel—NSGA-III—EDAS Based Optimal Design of Thin Film Coatings

    Kamlendra Vikram1, Uvaraja Ragavendran2, Kanak Kalita1,*, Ranjan Kumar Ghadai3, Xiao-Zhi Gao4

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1771-1784, 2021, DOI:10.32604/cmc.2020.013946

    Abstract In this work, diamond-like carbon (DLC) thin film coatings are deposited on silicon substrates by using plasma-enhanced chemical vapour deposition (PECVD) technique. By varying the hydrogen (H2) flow rate, CH4−Argon (Ar) flow rate and deposition temperature (Td) as per a Box-Behnken experimental design (BBD), 15 DLC deposition experiments are carried out. The Young’s modulus (E) and the coefficient of friction (COF) for the DLCs are measured. By using a second-order polynomial regression approach, two metamodels are built for E and COF, that establish them as functions of H2 flow rate, CH4-Ar flow rate and Td. A non-dominated sorting genetic algorithm… More >

  • Open Access


    Fractional Analysis of Thin Film Flow of Non-Newtonian Fluid

    Farnaz Ismail1, Mubashir Qayyum2, *, Syed Inayat Ali Shah1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 825-845, 2020, DOI:10.32604/cmes.2020.011073

    Abstract Modeling and analysis of thin film flow with respect to magneto hydro dynamical effect has been an important theme in the field of fluid dynamics, due to its vast industrial applications. The analysis involves studying the behavior and response of governing equations on the basis of various parameters such as thickness of the film, film surface profile, shear stress, liquid velocity, volumetric flux, vorticity, gravity, viscosity among others, along with different boundary conditions. In this article, we extend this analysis in fractional space using a homotopy based scheme, considering the case of a Non-Newtonian Pseudo-Plastic fluid for lifting and drainage… More >

  • Open Access


    Finite Element Modeling of Thin Layers

    Dan Givoli1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp. 497-514, 2004, DOI:10.3970/cmes.2004.005.497

    Abstract Very thin layers with material properties which significantly differ from those of the surrounding medium appear in a variety of applications. Traditionally there are two extreme ways of handling such layers in finite element analysis: either they are fully modelled or they are totally ignored. The former option is often very expensive computationally, while the latter may lead to significant inaccuracies. Here a special technique of modeling thin layers is devised within the framework of the finite element method. This technique constitutes a prudent compromise between the two extremes mentioned above. The layer is replaced by an interface, namely a… More >

  • Open Access


    Phase-field simulation of domain evolution in ferroelectric thin films with deadlayers

    Yifan Xia, Jie Wang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.3, pp. 87-88, 2011, DOI:10.3970/icces.2011.020.087

    Abstract Phase field simulation is an effective way to predict the domain evolution in ferroelectric materials. A phase field model is developed to investigate the domain structures and polarization switching in in ferroelectric thin films with deadlayers. Simulation results show that the deadlayers as well as misfit strain have a significant influence on the domain structures and polarization switching in the ferroelectric thin films. It is found that the simulated switching electric field in ferroelectric thin films decreases with the thickness of the deadlayers increasing. More >

  • Open Access


    An investigation on the bilayer buckling technique for thin film metrology

    Jia Fei, Xiu-Peng Zheng, Yan-Ping Cao*, Xi-Qiao Feng

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.1, pp. 11-12, 2011, DOI:10.3970/icces.2011.018.011

    Abstract Recently, a novel technique based on the wrinkling of a bilayer composite film resting on a compliant substrate was proposed to measure the elastic moduli of thin films. In this paper, this technique is studied via theoretical analysis and finite element simulations. We find that under an applied compressive strain, the composite system may exhibit various buckling modes, depending upon the applied compressive strain, the geometric and material parameters of the system. We elucidate the physical mechanisms underlying the occurrence of two most typical buckling modes from the view point of energy. When the intermediate layer is much thicker than… More >

  • Open Access


    Thin Film Formation and Photovoltaic Application of Transition Metal Dichalcogenides By Liquid Exfoliation

    Seung Kyo Lee, Dongil Chu, Eun Kyu Kim*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 93-93, 2019, DOI:10.32604/icces.2019.04995

    Abstract We studied on a liquid exfoliation technique for the robust production of transition metal dichalcogenides (TMDC) thin films, because this technique has advantages for residue-free, large-scale, and low-cost fabrication. During the process of liquid exfoliation, a mixture of DI water and ethanol was used to obtain higher concentrations of TMDC flakes in the solution compared to that in water-based solution. The film thicknesses were controlled by a two-step centrifuge process to analyze the influence on the photovoltaic properties with gold/TMDC/silicon geometry. Based on ultraviolet photoelectron spectroscopy measurement results, the energy band diagram of the devices using MoS2 and WS2 films… More >

  • Open Access


    Numerical Study of Indentation Delamination of Strongly Bonded Films by Use of a Cohesive Zone Model

    W. Li1 and T. Siegmund1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.1, pp. 81-90, 2004, DOI:10.3970/cmes.2004.005.081

    Abstract Results of a computational study of the mechanics of indentation induced interface delamination are described for a system consisting of a ductile film on an elastic substrate. Special attention is paid to the properties of the interface between film and substrate, and the influence of the interface properties on the indentation response. Specifically, strong interfaces are considered. The interface is characterized by the use of a cohesive zone model. The finite element method is used to solve the boundary value problem, with the interface behavior incorporated via a cohesive model in a traction-separation formulation. The model does not include any… More >

Displaying 1-10 on page 1 of 33. Per Page  

Share Link