Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (205)
  • Open Access

    ARTICLE

    Transfer Learning-Based Semi-Supervised Generative Adversarial Network for Malaria Classification

    Ibrar Amin1, Saima Hassan1, Samir Brahim Belhaouari2,*, Muhammad Hamza Azam3

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6335-6349, 2023, DOI:10.32604/cmc.2023.033860 - 28 December 2022

    Abstract Malaria is a lethal disease responsible for thousands of deaths worldwide every year. Manual methods of malaria diagnosis are time-consuming that require a great deal of human expertise and efforts. Computer-based automated diagnosis of diseases is progressively becoming popular. Although deep learning models show high performance in the medical field, it demands a large volume of data for training which is hard to acquire for medical problems. Similarly, labeling of medical images can be done with the help of medical experts only. Several recent studies have utilized deep learning models to develop efficient malaria diagnostic More >

  • Open Access

    ARTICLE

    Sparrow Search Optimization with Transfer Learning-Based Crowd Density Classification

    Mohammad Yamin1,*, Mishaal Mofleh Almutairi2, Saeed Badghish3, Saleh Bajaba4

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4965-4981, 2023, DOI:10.32604/cmc.2023.033705 - 28 December 2022

    Abstract Due to the rapid increase in urbanization and population, crowd gatherings are frequently observed in the form of concerts, political, and religious meetings. HAJJ is one of the well-known crowding events that takes place every year in Makkah, Saudi Arabia. Crowd density estimation and crowd monitoring are significant research areas in Artificial Intelligence (AI) applications. The current research study develops a new Sparrow Search Optimization with Deep Transfer Learning based Crowd Density Detection and Classification (SSODTL-CD2C) model. The presented SSODTL-CD2C technique majorly focuses on the identification and classification of crowd densities. To attain this, SSODTL-CD2C… More >

  • Open Access

    ARTICLE

    Sailfish Optimizer with Deep Transfer Learning-Enabled Arabic Handwriting Character Recognition

    Mohammed Maray1, Badriyya B. Al-onazi2, Jaber S. Alzahrani3, Saeed Masoud Alshahrani4,*, Najm Alotaibi5, Sana Alazwari6, Mahmoud Othman7, Manar Ahmed Hamza8

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5467-5482, 2023, DOI:10.32604/cmc.2023.033534 - 28 December 2022

    Abstract The recognition of the Arabic characters is a crucial task in computer vision and Natural Language Processing fields. Some major complications in recognizing handwritten texts include distortion and pattern variabilities. So, the feature extraction process is a significant task in NLP models. If the features are automatically selected, it might result in the unavailability of adequate data for accurately forecasting the character classes. But, many features usually create difficulties due to high dimensionality issues. Against this background, the current study develops a Sailfish Optimizer with Deep Transfer Learning-Enabled Arabic Handwriting Character Recognition (SFODTL-AHCR) model. The… More >

  • Open Access

    ARTICLE

    Detecting Tuberculosis from Vietnamese X-Ray Imaging Using Transfer Learning Approach

    Ha Manh Toan1, Lam Thanh Hien2, Ngo Duc Vinh3, Do Nang Toan1,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5001-5016, 2023, DOI:10.32604/cmc.2023.033429 - 28 December 2022

    Abstract Deep learning created a sharp rise in the development of autonomous image recognition systems, especially in the case of the medical field. Among lung problems, tuberculosis, caused by a bacterium called Mycobacterium tuberculosis, is a dangerous disease because of its infection and damage. When an infected person coughs or sneezes, tiny droplets can bring pathogens to others through inhaling. Tuberculosis mainly damages the lungs, but it also affects any part of the body. Moreover, during the period of the COVID-19 (coronavirus disease 2019) pandemic, the access to tuberculosis diagnosis and treatment has become more difficult, so… More >

  • Open Access

    ARTICLE

    Lightning Search Algorithm with Deep Transfer Learning-Based Vehicle Classification

    Mrim M. Alnfiai*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6505-6521, 2023, DOI:10.32604/cmc.2023.033422 - 28 December 2022

    Abstract There is a drastic increase experienced in the production of vehicles in recent years across the globe. In this scenario, vehicle classification system plays a vital part in designing Intelligent Transportation Systems (ITS) for automatic highway toll collection, autonomous driving, and traffic management. Recently, computer vision and pattern recognition models are useful in designing effective vehicle classification systems. But these models are trained using a small number of hand-engineered features derived from small datasets. So, such models cannot be applied for real-time road traffic conditions. Recent developments in Deep Learning (DL)-enabled vehicle classification models are… More >

  • Open Access

    ARTICLE

    A Novel Efficient Patient Monitoring FER System Using Optimal DL-Features

    Mousa Alhajlah*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6161-6175, 2023, DOI:10.32604/cmc.2023.032505 - 28 December 2022

    Abstract Automated Facial Expression Recognition (FER) serves as the backbone of patient monitoring systems, security, and surveillance systems. Real-time FER is a challenging task, due to the uncontrolled nature of the environment and poor quality of input frames. In this paper, a novel FER framework has been proposed for patient monitoring. Preprocessing is performed using contrast-limited adaptive enhancement and the dataset is balanced using augmentation. Two lightweight efficient Convolution Neural Network (CNN) models MobileNetV2 and Neural search Architecture Network Mobile (NasNetMobile) are trained, and feature vectors are extracted. The Whale Optimization Algorithm (WOA) is utilized to More >

  • Open Access

    ARTICLE

    Gait Image Classification Using Deep Learning Models for Medical Diagnosis

    Pavitra Vasudevan1, R. Faerie Mattins1, S. Srivarshan1, Ashvath Narayanan1, Gayatri Wadhwani1, R. Parvathi1, R. Maheswari2,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6039-6063, 2023, DOI:10.32604/cmc.2023.032331 - 28 December 2022

    Abstract Gait refers to a person’s particular movements and stance while moving around. Although each person’s gait is unique and made up of a variety of tiny limb orientations and body positions, they all have common characteristics that help to define normalcy. Swiftly identifying such characteristics that are difficult to spot by the naked eye, can help in monitoring the elderly who require constant care and support. Analyzing silhouettes is the easiest way to assess and make any necessary adjustments for a smooth gait. It also becomes an important aspect of decision-making while analyzing and monitoring… More >

  • Open Access

    ARTICLE

    Two-Stream Deep Learning Architecture-Based Human Action Recognition

    Faheem Shehzad1, Muhammad Attique Khan2, Muhammad Asfand E. Yar3, Muhammad Sharif1, Majed Alhaisoni4, Usman Tariq5, Arnab Majumdar6, Orawit Thinnukool7,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5931-5949, 2023, DOI:10.32604/cmc.2023.028743 - 28 December 2022

    Abstract Human action recognition (HAR) based on Artificial intelligence reasoning is the most important research area in computer vision. Big breakthroughs in this field have been observed in the last few years; additionally, the interest in research in this field is evolving, such as understanding of actions and scenes, studying human joints, and human posture recognition. Many HAR techniques are introduced in the literature. Nonetheless, the challenge of redundant and irrelevant features reduces recognition accuracy. They also faced a few other challenges, such as differing perspectives, environmental conditions, and temporal variations, among others. In this work,… More >

  • Open Access

    ARTICLE

    EfficientNetV2 Model for Plant Disease Classification and Pest Recognition

    R. S. Sandhya Devi1,*, V. R. Vijay Kumar2, P. Sivakumar3

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2249-2263, 2023, DOI:10.32604/csse.2023.032231 - 03 November 2022

    Abstract Plant disease classification and prevention of spreading of the disease at earlier stages based on visual leaves symptoms and Pest recognition through deep learning-based image classification is in the forefront of research. To perform the investigation on Plant and pest classification, Transfer Learning (TL) approach is used on EfficientNet-V2. TL requires limited labelled data and shorter training time. However, the limitation of TL is the pre-trained model network’s topology is static and the knowledge acquired is detrimentally overwriting the old parameters. EfficientNet-V2 is a Convolutional Neural Network (CNN) model with significant high speed learning rates… More >

  • Open Access

    ARTICLE

    Large Scale Fish Images Classification and Localization using Transfer Learning and Localization Aware CNN Architecture

    Usman Ahmad1, Muhammad Junaid Ali2, Faizan Ahmed Khan3, Arfat Ahmad Khan4, Arif Ur Rehman1, Malik Muhammad Ali Shahid5, Mohd Anul Haq6,*, Ilyas Khan7, Zamil S. Alzamil6, Ahmed Alhussen8

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2125-2140, 2023, DOI:10.32604/csse.2023.031008 - 03 November 2022

    Abstract Building an automatic fish recognition and detection system for large-scale fish classes is helpful for marine researchers and marine scientists because there are large numbers of fish species. However, it is quite difficult to build such systems owing to the lack of data imbalance problems and large number of classes. To solve these issues, we propose a transfer learning-based technique in which we use Efficient-Net, which is pre-trained on ImageNet dataset and fine-tuned on QuT Fish Database, which is a large scale dataset. Furthermore, prior to the activation layer, we use Global Average Pooling (GAP)… More >

Displaying 101-110 on page 11 of 205. Per Page