Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (209)
  • Open Access

    ARTICLE

    A Novel Siamese Network for Few/Zero-Shot Handwritten Character Recognition Tasks

    Nagwa Elaraby*, Sherif Barakat, Amira Rezk

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1837-1854, 2023, DOI:10.32604/cmc.2023.032288 - 22 September 2022

    Abstract Deep metric learning is one of the recommended methods for the challenge of supporting few/zero-shot learning by deep networks. It depends on building a Siamese architecture of two homogeneous Convolutional Neural Networks (CNNs) for learning a distance function that can map input data from the input space to the feature space. Instead of determining the class of each sample, the Siamese architecture deals with the existence of a few training samples by deciding if the samples share the same class identity or not. The traditional structure for the Siamese architecture was built by forming two… More >

  • Open Access

    ARTICLE

    Calf Posture Recognition Using Convolutional Neural Network

    Tan Chen Tung1, Uswah Khairuddin1, Mohd Ibrahim Shapiai1, Norhariani Md Nor2,*, Mark Wen Han Hiew2, Nurul Aisyah Mohd Suhaimie3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1493-1508, 2023, DOI:10.32604/cmc.2023.029277 - 22 September 2022

    Abstract Dairy farm management is crucial to maintain the longevity of the farm, and poor dairy youngstock or calf management could lead to gradually deteriorating calf health, which often causes premature death. This was found to be the most neglected part among the management workflows in Malaysia and has caused continuous loss over the recent years. Calf posture recognition is one of the effective methods to monitor calf behaviour and health state, which can be achieved by monitoring the calf behaviours of standing and lying where the former depicts active calf, and the latter, passive calf.… More >

  • Open Access

    ARTICLE

    Challenge-Response Emotion Authentication Algorithm Using Modified Horizontal Deep Learning

    Mohamed Ezz1, Ayman Mohamed Mostafa1,*, Ayman Elshenawy2,3

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3659-3675, 2023, DOI:10.32604/iasc.2023.031561 - 17 August 2022

    Abstract Face authentication is an important biometric authentication method commonly used in security applications. It is vulnerable to different types of attacks that use authorized users’ facial images and videos captured from social media to perform spoofing attacks and dynamic movements for penetrating security applications. This paper presents an innovative challenge-response emotions authentication model based on the horizontal ensemble technique. The proposed model provides high accurate face authentication process by challenging the authorized user using a random sequence of emotions to provide a specific response for every authentication trial with a different sequence of emotions. The… More >

  • Open Access

    ARTICLE

    Cephalopods Classification Using Fine Tuned Lightweight Transfer Learning Models

    P. Anantha Prabha1,*, G. Suchitra2, R. Saravanan3

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3065-3079, 2023, DOI:10.32604/iasc.2023.030017 - 17 August 2022

    Abstract Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist. Manual observation and identification take time and are always contingent on the involvement of experts. A system is proposed to alleviate this challenge that uses transfer learning techniques to classify the cephalopods automatically. In the proposed method, only the Lightweight pre-trained networks are chosen to enable IoT in the task of cephalopod recognition. First, the efficiency of the chosen models is determined by evaluating their performance and comparing the findings. Second, the models are fine-tuned by adding dense layers… More >

  • Open Access

    ARTICLE

    Recent Advances in Fatigue Detection Algorithm Based on EEG

    Fei Wang1,2, Yinxing Wan1, Man Li1,2, Haiyun Huang1,2, Li Li1, Xueying Hou1, Jiahui Pan1,2, Zhenfu Wen3, Jingcong Li1,2,*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3573-3586, 2023, DOI:10.32604/iasc.2023.029698 - 17 August 2022

    Abstract Fatigue is a state commonly caused by overworked, which seriously affects daily work and life. How to detect mental fatigue has always been a hot spot for researchers to explore. Electroencephalogram (EEG) is considered one of the most accurate and objective indicators. This article investigated the development of classification algorithms applied in EEG-based fatigue detection in recent years. According to the different source of the data, we can divide these classification algorithms into two categories, intra-subject (within the same subject) and cross-subject (across different subjects). In most studies, traditional machine learning algorithms with artificial feature… More >

  • Open Access

    ARTICLE

    Robust Deep Transfer Learning Based Object Detection and Tracking Approach

    C. Narmadha1, T. Kavitha2, R. Poonguzhali2, V. Hamsadhwani3, Ranjan walia4, Monia5, B. Jegajothi6,*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3613-3626, 2023, DOI:10.32604/iasc.2023.029323 - 17 August 2022

    Abstract At present days, object detection and tracking concepts have gained more importance among researchers and business people. Presently, deep learning (DL) approaches have been used for object tracking as it increases the performance and speed of the tracking process. This paper presents a novel robust DL based object detection and tracking algorithm using Automated Image Annotation with ResNet based Faster regional convolutional neural network (R-CNN) named (AIA-FRCNN) model. The AIA-RFRCNN method performs image annotation using a Discriminative Correlation Filter (DCF) with Channel and Spatial Reliability tracker (CSR) called DCF-CSRT model. The AIA-RFRCNN model makes use… More >

  • Open Access

    ARTICLE

    Masked Face Recognition Using MobileNet V2 with Transfer Learning

    Ratnesh Kumar Shukla1,*, Arvind Kumar Tiwari2

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 293-309, 2023, DOI:10.32604/csse.2023.027986 - 16 August 2022

    Abstract Corona virus (COVID-19) is once in a life time calamity that has resulted in thousands of deaths and security concerns. People are using face masks on a regular basis to protect themselves and to help reduce corona virus transmission. During the on-going coronavirus outbreak, one of the major priorities for researchers is to discover effective solution. As important parts of the face are obscured, face identification and verification becomes exceedingly difficult. The suggested method is a transfer learning using MobileNet V2 based technology that uses deep feature such as feature extraction and deep learning model,… More >

  • Open Access

    ARTICLE

    Progressive Transfer Learning-based Deep Q Network for DDOS Defence in WSN

    S. Rameshkumar1,*, R. Ganesan2, A. Merline1

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2379-2394, 2023, DOI:10.32604/csse.2023.027910 - 01 August 2022

    Abstract In The Wireless Multimedia Sensor Network (WNSMs) have achieved popularity among diverse communities as a result of technological breakthroughs in sensor and current gadgets. By utilising portable technologies, it achieves solid and significant results in wireless communication, media transfer, and digital transmission. Sensor nodes have been used in agriculture and industry to detect characteristics such as temperature, moisture content, and other environmental conditions in recent decades. WNSMs have also made apps easier to use by giving devices self-governing access to send and process data connected with appropriate audio and video information. Many video sensor network… More >

  • Open Access

    ARTICLE

    A Transfer Learning Based Approach for COVID-19 Detection Using Inception-v4 Model

    Ali Alqahtani1, Shumaila Akram2, Muhammad Ramzan2,3,*, Fouzia Nawaz2, Hikmat Ullah Khan4, Essa Alhashlan5, Samar M. Alqhtani1, Areeba Waris6, Zain Ali7

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1721-1736, 2023, DOI:10.32604/iasc.2023.025597 - 19 July 2022

    Abstract Coronavirus (COVID-19 or SARS-CoV-2) is a novel viral infection that started in December 2019 and has erupted rapidly in more than 150 countries. The rapid spread of COVID-19 has caused a global health emergency and resulted in governments imposing lock-downs to stop its transmission. There is a significant increase in the number of patients infected, resulting in a lack of test resources and kits in most countries. To overcome this panicked state of affairs, researchers are looking forward to some effective solutions to overcome this situation: one of the most common and effective methods is… More >

  • Open Access

    ARTICLE

    Deep-BERT: Transfer Learning for Classifying Multilingual Offensive Texts on Social Media

    Md. Anwar Hussen Wadud1, M. F. Mridha1, Jungpil Shin2,*, Kamruddin Nur3, Aloke Kumar Saha4

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1775-1791, 2023, DOI:10.32604/csse.2023.027841 - 15 June 2022

    Abstract Offensive messages on social media, have recently been frequently used to harass and criticize people. In recent studies, many promising algorithms have been developed to identify offensive texts. Most algorithms analyze text in a unidirectional manner, where a bidirectional method can maximize performance results and capture semantic and contextual information in sentences. In addition, there are many separate models for identifying offensive texts based on monolingual and multilingual, but there are a few models that can detect both monolingual and multilingual-based offensive texts. In this study, a detection system has been developed for both monolingual… More >

Displaying 121-130 on page 13 of 209. Per Page