Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (199)
  • Open Access

    REVIEW

    A Survey on Artificial Intelligence in Posture Recognition

    Xiaoyan Jiang1,2, Zuojin Hu1, Shuihua Wang2, Yudong Zhang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 35-82, 2023, DOI:10.32604/cmes.2023.027676 - 23 April 2023

    Abstract Over the years, the continuous development of new technology has promoted research in the field of posture recognition and also made the application field of posture recognition have been greatly expanded. The purpose of this paper is to introduce the latest methods of posture recognition and review the various techniques and algorithms of posture recognition in recent years, such as scale-invariant feature transform, histogram of oriented gradients, support vector machine (SVM), Gaussian mixture model, dynamic time warping, hidden Markov model (HMM), lightweight network, convolutional neural network (CNN). We also investigate improved methods of CNN, such… More >

  • Open Access

    ARTICLE

    Intelligent Beetle Antenna Search with Deep Transfer Learning Enabled Medical Image Classification Model

    Mohamed Ibrahim Waly*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3159-3174, 2023, DOI:10.32604/csse.2023.035900 - 03 April 2023

    Abstract Recently, computer assisted diagnosis (CAD) model creation has become more dependent on medical picture categorization. It is often used to identify several conditions, including brain disorders, diabetic retinopathy, and skin cancer. Most traditional CAD methods relied on textures, colours, and forms. Because many models are issue-oriented, they need a more substantial capacity to generalize and cannot capture high-level problem domain notions. Recent deep learning (DL) models have been published, providing a practical way to develop models specifically for classifying input medical pictures. This paper offers an intelligent beetle antenna search (IBAS-DTL) method for classifying medical… More >

  • Open Access

    ARTICLE

    An Efficient and Robust Hand Gesture Recognition System of Sign Language Employing Finetuned Inception-V3 and Efficientnet-B0 Network

    Adnan Hussain1, Sareer Ul Amin2, Muhammad Fayaz3, Sanghyun Seo4,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3509-3525, 2023, DOI:10.32604/csse.2023.037258 - 03 April 2023

    Abstract Hand Gesture Recognition (HGR) is a promising research area with an extensive range of applications, such as surgery, video game techniques, and sign language translation, where sign language is a complicated structured form of hand gestures. The fundamental building blocks of structured expressions in sign language are the arrangement of the fingers, the orientation of the hand, and the hand’s position concerning the body. The importance of HGR has increased due to the increasing number of touchless applications and the rapid growth of the hearing-impaired population. Therefore, real-time HGR is one of the most effective… More >

  • Open Access

    ARTICLE

    Modified Metaheuristics with Transfer Learning Based Insect Pest Classification for Agricultural Crops

    Saud Yonbawi1, Sultan Alahmari2, T. Satyanarayana murthy3, Ravuri Daniel4, E. Laxmi Lydia5, Mohamad Khairi Ishak6, Hend Khalid Alkahtani7,*, Ayman Aljarbouh8, Samih M. Mostafa9

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3847-3864, 2023, DOI:10.32604/csse.2023.036552 - 03 April 2023

    Abstract Crop insect detection becomes a tedious process for agronomists because a substantial part of the crops is damaged, and due to the pest attacks, the quality is degraded. They are the major reason behind crop quality degradation and diminished crop productivity. Hence, accurate pest detection is essential to guarantee safety and crop quality. Conventional identification of insects necessitates highly trained taxonomists to detect insects precisely based on morphological features. Lately, some progress has been made in agriculture by employing machine learning (ML) to classify and detect pests. This study introduces a Modified Metaheuristics with Transfer… More >

  • Open Access

    ARTICLE

    Image Emotion Classification Network Based on Multilayer Attentional Interaction, Adaptive Feature Aggregation

    Xiaorui Zhang1,2,3,*, Chunlin Yuan1, Wei Sun3,4, Sunil Kumar Jha5

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4273-4291, 2023, DOI:10.32604/cmc.2023.036975 - 31 March 2023

    Abstract The image emotion classification task aims to use the model to automatically predict the emotional response of people when they see the image. Studies have shown that certain local regions are more likely to inspire an emotional response than the whole image. However, existing methods perform poorly in predicting the details of emotional regions and are prone to overfitting during training due to the small size of the dataset. Therefore, this study proposes an image emotion classification network based on multilayer attentional interaction and adaptive feature aggregation. To perform more accurate emotional region prediction, this… More >

  • Open Access

    ARTICLE

    Deep Transfer Learning-Enabled Activity Identification and Fall Detection for Disabled People

    Majdy M. Eltahir1, Adil Yousif2, Fadwa Alrowais3, Mohamed K. Nour4, Radwa Marzouk5, Hatim Dafaalla6, Asma Abbas Hassan Elnour6, Amira Sayed A. Aziz7, Manar Ahmed Hamza8,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3239-3255, 2023, DOI:10.32604/cmc.2023.034037 - 31 March 2023

    Abstract The human motion data collected using wearables like smartwatches can be used for activity recognition and emergency event detection. This is especially applicable in the case of elderly or disabled people who live self-reliantly in their homes. These sensors produce a huge volume of physical activity data that necessitates real-time recognition, especially during emergencies. Falling is one of the most important problems confronted by older people and people with movement disabilities. Numerous previous techniques were introduced and a few used webcam to monitor the activity of elderly or disabled people. But, the costs incurred upon… More >

  • Open Access

    ARTICLE

    VMCTE: Visualization-Based Malware Classification Using Transfer and Ensemble Learning

    Zhiguo Chen1,2,*, Jiabing Cao1,2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4445-4465, 2023, DOI:10.32604/cmc.2023.038639 - 31 March 2023

    Abstract The Corona Virus Disease 2019 (COVID-19) effect has made telecommuting and remote learning the norm. The growing number of Internet-connected devices provides cyber attackers with more attack vectors. The development of malware by criminals also incorporates a number of sophisticated obfuscation techniques, making it difficult to classify and detect malware using conventional approaches. Therefore, this paper proposes a novel visualization-based malware classification system using transfer and ensemble learning (VMCTE). VMCTE has a strong anti-interference ability. Even if malware uses obfuscation, fuzzing, encryption, and other techniques to evade detection, it can be accurately classified into its… More >

  • Open Access

    ARTICLE

    Hand Gesture Recognition for Disabled People Using Bayesian Optimization with Transfer Learning

    Fadwa Alrowais1, Radwa Marzouk2,3, Fahd N. Al-Wesabi4,*, Anwer Mustafa Hilal5

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3325-3342, 2023, DOI:10.32604/iasc.2023.036354 - 15 March 2023

    Abstract Sign language recognition can be treated as one of the efficient solutions for disabled people to communicate with others. It helps them to convey the required data by the use of sign language with no issues. The latest developments in computer vision and image processing techniques can be accurately utilized for the sign recognition process by disabled people. American Sign Language (ASL) detection was challenging because of the enhancing intraclass similarity and higher complexity. This article develops a new Bayesian Optimization with Deep Learning-Driven Hand Gesture Recognition Based Sign Language Communication (BODL-HGRSLC) for Disabled People.… More >

  • Open Access

    ARTICLE

    Learning-Related Sentiment Detection, Classification, and Application for a Quality Education Using Artificial Intelligence Techniques

    Samah Alhazmi1,*, Shahnawaz Khan2, Mohammad Haider Syed1

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3487-3499, 2023, DOI:10.32604/iasc.2023.036297 - 15 March 2023

    Abstract Quality education is one of the primary objectives of any nation-building strategy and is one of the seventeen Sustainable Development Goals (SDGs) by the United Nations. To provide quality education, delivering top-quality content is not enough. However, understanding the learners’ emotions during the learning process is equally important. However, most of this research work uses general data accessed from Twitter or other publicly available databases. These databases are generally not an ideal representation of the actual learning process and the learners’ sentiments about the learning process. This research has collected real data from the learners, More >

  • Open Access

    ARTICLE

    Improved Siamese Palmprint Authentication Using Pre-Trained VGG16-Palmprint and Element-Wise Absolute Difference

    Mohamed Ezz, Waad Alanazi, Ayman Mohamed Mostafa*, Eslam Hamouda, Murtada K. Elbashir, Meshrif Alruily

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2299-2317, 2023, DOI:10.32604/csse.2023.036567 - 09 February 2023

    Abstract Palmprint identification has been conducted over the last two decades in many biometric systems. High-dimensional data with many uncorrelated and duplicated features remains difficult due to several computational complexity issues. This paper presents an interactive authentication approach based on deep learning and feature selection that supports Palmprint authentication. The proposed model has two stages of learning; the first stage is to transfer pre-trained VGG-16 of ImageNet to specific features based on the extraction model. The second stage involves the VGG-16 Palmprint feature extraction in the Siamese network to learn Palmprint similarity. The proposed model achieves More >

Displaying 71-80 on page 8 of 199. Per Page