Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (77)
  • Open Access

    REVIEW

    A Review on the Recent Trends of Image Steganography for VANET Applications

    Arshiya S. Ansari*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 2865-2892, 2024, DOI:10.32604/cmc.2024.045908 - 26 March 2024

    Abstract Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look. Whereas vehicular ad hoc networks (VANETs), which enable vehicles to communicate with one another and with roadside infrastructure to enhance safety and traffic flow provide a range of value-added services, as they are an essential component of modern smart transportation systems. VANETs steganography has been suggested by many authors for secure, reliable message transfer between terminal/hope to terminal/hope and also to secure it from attack for privacy protection. This paper aims to determine whether using steganography is… More >

  • Open Access

    ARTICLE

    Coordinated Voltage Control of Distribution Network Considering Multiple Types of Electric Vehicles

    Liang Liu, Guangda Xu*, Yuan Zhao, Yi Lu, Yu Li, Jing Gao

    Energy Engineering, Vol.121, No.2, pp. 377-404, 2024, DOI:10.32604/ee.2023.041311 - 25 January 2024

    Abstract The couple between the power network and the transportation network (TN) is deepening gradually with the increasing penetration rate of electric vehicles (EV), which also poses a great challenge to the traditional voltage control scheme. In this paper, we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV. In the first stage, the action of on-load tap changer and capacitor banks, etc., are determined by optimal power flow calculation, and the node electricity price is also determined based on dynamic time-of-use tariff mechanism. In the second stage, multiple… More >

  • Open Access

    ARTICLE

    Deep Learning Based Vehicle Detection and Counting System for Intelligent Transportation

    A. Vikram1, J. Akshya2, Sultan Ahmad3,4, L. Jerlin Rubini5, Seifedine Kadry6,7,8, Jungeun Kim9,*

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 115-130, 2024, DOI:10.32604/csse.2023.037928 - 26 January 2024

    Abstract Traffic monitoring through remote sensing images (RSI) is considered an important research area in Intelligent Transportation Systems (ITSs). Vehicle counting systems must be simple enough to be implemented in real-time. With the fast expansion of road traffic, real-time vehicle counting becomes essential in constructing ITS. Compared with conventional technologies, the remote sensing-related technique for vehicle counting exhibits greater significance and considerable advantages in its flexibility, low cost, and high efficiency. But several techniques need help in balancing complexity and accuracy technique. Therefore, this article presents a deep learning-based vehicle detection and counting system for ITS More >

  • Open Access

    ARTICLE

    Traffic Control Based on Integrated Kalman Filtering and Adaptive Quantized Q-Learning Framework for Internet of Vehicles

    Othman S. Al-Heety1,*, Zahriladha Zakaria1,*, Ahmed Abu-Khadrah2, Mahamod Ismail3, Sarmad Nozad Mahmood4, Mohammed Mudhafar Shakir5, Sameer Alani6, Hussein Alsariera1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2103-2127, 2024, DOI:10.32604/cmes.2023.029509 - 15 December 2023

    Abstract Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision. In this article, these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data. The framework integrates Kalman filtering and Q-learning. Unlike smoothing Kalman filtering, our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error. Unlike traditional Q-learning, our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from… More >

  • Open Access

    ARTICLE

    Analyzing the Impact of Blockchain Models for Securing Intelligent Logistics through Unified Computational Techniques

    Mohammed S. Alsaqer1, Majid H. Alsulami2,*, Rami N. Alkhawaji3, Abdulellah A. Alaboudi2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3943-3968, 2023, DOI:10.32604/cmc.2023.042379 - 26 December 2023

    Abstract Blockchain technology has revolutionized conventional trade. The success of blockchain can be attributed to its distributed ledger characteristic, which secures every record inside the ledger using cryptography rules, making it more reliable, secure, and tamper-proof. This is evident by the significant impact that the use of this technology has had on people connected to digital spaces in the present-day context. Furthermore, it has been proven that blockchain technology is evolving from new perspectives and that it provides an effective mechanism for the intelligent transportation system infrastructure. To realize the full potential of the accurate and… More >

  • Open Access

    ARTICLE

    YOLO and Blockchain Technology Applied to Intelligent Transportation License Plate Character Recognition for Security

    Fares Alharbi1, Reem Alshahrani2, Mohammed Zakariah3,*, Amjad Aldweesh1, Abdulrahman Abdullah Alghamdi1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3697-3722, 2023, DOI:10.32604/cmc.2023.040086 - 26 December 2023

    Abstract Privacy and trust are significant issues in intelligent transportation systems (ITS). Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless devices and routes such as radio channels, optical fiber, and blockchain technology. The Internet of Things (IoT) is a network of connected, interconnected gadgets. Privacy issues occasionally arise due to the amount of data generated. However, they have been primarily addressed by blockchain and smart contract technology. While there are still security issues with smart contracts, primarily due to the complexity of writing… More >

  • Open Access

    ARTICLE

    Traffic Scene Captioning with Multi-Stage Feature Enhancement

    Dehai Zhang*, Yu Ma, Qing Liu, Haoxing Wang, Anquan Ren, Jiashu Liang

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2901-2920, 2023, DOI:10.32604/cmc.2023.038264 - 08 October 2023

    Abstract Traffic scene captioning technology automatically generates one or more sentences to describe the content of traffic scenes by analyzing the content of the input traffic scene images, ensuring road safety while providing an important decision-making function for sustainable transportation. In order to provide a comprehensive and reasonable description of complex traffic scenes, a traffic scene semantic captioning model with multi-stage feature enhancement is proposed in this paper. In general, the model follows an encoder-decoder structure. First, multi-level granularity visual features are used for feature enhancement during the encoding process, which enables the model to learn… More >

  • Open Access

    ARTICLE

    A Nonlinear Spatiotemporal Optimization Method of Hypergraph Convolution Networks for Traffic Prediction

    Difeng Zhu1, Zhimou Zhu2, Xuan Gong1, Demao Ye1, Chao Li3,*, Jingjing Chen4,*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3083-3100, 2023, DOI:10.32604/iasc.2023.040517 - 11 September 2023

    Abstract Traffic prediction is a necessary function in intelligent transportation systems to alleviate traffic congestion. Graph learning methods mainly focus on the spatiotemporal dimension, but ignore the nonlinear movement of traffic prediction and the high-order relationships among various kinds of road segments. There exist two issues: 1) deep integration of the spatiotemporal information and 2) global spatial dependencies for structural properties. To address these issues, we propose a nonlinear spatiotemporal optimization method, which introduces hypergraph convolution networks (HGCN). The method utilizes the higher-order spatial features of the road network captured by HGCN, and dynamically integrates them More >

  • Open Access

    ARTICLE

    Improved Transportation Model with Internet of Things Using Artificial Intelligence Algorithm

    Ayman Khallel Al-Ani1,*, Shams Ul Arfeen Laghari2, Hariprasath Manoharan3, Shitharth Selvarajan4, Mueen Uddin5

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2261-2279, 2023, DOI:10.32604/cmc.2023.038534 - 30 August 2023

    Abstract In this paper, the application of transportation systems in real-time traffic conditions is evaluated with data handling representations. The proposed method is designed in such a way as to detect the number of loads that are present in a vehicle where functionality tasks are computed in the system. Compared to the existing approach, the design model in the proposed method is made by dividing the computing areas into several cluster regions, thereby reducing the complex monitoring system where control errors are minimized. Furthermore, a route management technique is combined with Artificial Intelligence (AI) algorithm to More >

  • Open Access

    PROCEEDINGS

    Efficient and Robust Temperature Field Simulation of Long-Distance Crude Oil Pipeline Based on Bayesian Neural Network and PDE

    Weixin Jiang1,*, Qing Yuan2, Zongze Li3, Junhua Gong3, Bo Yu4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.08861

    Abstract The hydraulic and thermal simulation of crude oil pipeline transportation is greatly significant for the safe transportation and accurate regulation of pipelines. With reasonable basic parameters, the solution of the traditional partial differential equation (PDE) for the axial soil temperature field on the pipeline can obtain accurate simulation results, yet it brings about a low calculation efficiency problem. In order to overcome the low-efficiency problem, an efficient and robust hybrid solution model for soil temperature field coupling with Bayesian neural network and PDE is proposed, which considers the dynamic changes of boundary conditions. Four models,… More >

Displaying 11-20 on page 2 of 77. Per Page