Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (44)
  • Open Access

    ARTICLE

    Enhancement of Biomass Material Characterization Images Using an Improved U-Net

    Zuozheng Lian1, Hong Zhao2,*, Qianjun Zhang1, Haizhen Wang1, E. Erdun3

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1515-1528, 2022, DOI:10.32604/cmc.2022.024779

    Abstract For scanning electron microscopes with high resolution and a strong electric field, biomass materials under observation are prone to radiation damage from the electron beam. This results in blurred or non-viable images, which affect further observation of material microscopic morphology and characterization. Restoring blurred images to their original sharpness is still a challenging problem in image processing. Traditional methods can't effectively separate image context dependency and texture information, affect the effect of image enhancement and deblurring, and are prone to gradient disappearance during model training, resulting in great difficulty in model training. In this paper, we propose the use of… More >

  • Open Access

    ARTICLE

    Mu-Net: Multi-Path Upsampling Convolution Network for Medical Image Segmentation

    Jia Chen1, Zhiqiang He1, Dayong Zhu1, Bei Hui1,*, Rita Yi Man Li2, Xiao-Guang Yue3,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 73-95, 2022, DOI:10.32604/cmes.2022.018565

    Abstract Medical image segmentation plays an important role in clinical diagnosis, quantitative analysis, and treatment process. Since 2015, U-Net-based approaches have been widely used for medical image segmentation. The purpose of the U-Net expansive path is to map low-resolution encoder feature maps to full input resolution feature maps. However, the consecutive deconvolution and convolutional operations in the expansive path lead to the loss of some high-level information. More high-level information can make the segmentation more accurate. In this paper, we propose MU-Net, a novel, multi-path upsampling convolution network to retain more high-level information. The MU-Net mainly consists of three parts: contracting… More >

  • Open Access

    ARTICLE

    Improved U-Net-Based Novel Segmentation Algorithm for Underwater Mineral Image

    Haolin Wang1, Lihui Dong1, Wei Song1,2,3,*, Xiaobin Zhao1,3, Jianxin Xia4, Tongmu Liu5

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1573-1586, 2022, DOI:10.32604/iasc.2022.023994

    Abstract Autonomous underwater vehicle (AUV) has many intelligent optical system, which can collect underwater signal information to make the system decision. One of them is the intelligent vision system, and it can capture the images to analyze. The performance of the particle image segmentation plays an important role in the monitoring of underwater mineral resources. In order to improve the underwater mineral image segmentation performance, some novel segmentation algorithm architectures are proposed. In this paper, an improved mineral image segmentation is proposed based on the modified U-Net. The pyramid upsampling module and residual module are bring into the U-Net model, which… More >

  • Open Access

    ARTICLE

    Make U-Net Greater: An Easy-to-Embed Approach to Improve Segmentation Performance Using Hypergraph

    Jing Peng1,2,3, Jingfu Yang2, Chaoyang Xia2, Xiaojie Li2, Yanfen Guo2, Ying Fu2, Xinlai Chen4, Zhe Cui1,3,*

    Computer Systems Science and Engineering, Vol.42, No.1, pp. 319-333, 2022, DOI:10.32604/csse.2022.022314

    Abstract Cardiac anatomy segmentation is essential for cardiomyopathy clinical diagnosis and treatment planning. Thus, accurate delineation of target volumes at risk in cardiac anatomy is important. However, manual delineation is a time-consuming and labor-intensive process for cardiologists and has been shown to lead to significant inter-and intra-practitioner variability. Thus, computer-aided or fully automatic segmentation methods are required. They can significantly economize on manpower and improve treatment efficiency. Recently, deep convolutional neural network (CNN) based methods have achieved remarkable successes in various kinds of vision tasks, such as classification, segmentation and object detection. Semantic segmentation can be considered as a pixel-wise task,… More >

  • Open Access

    ARTICLE

    Optimized U-Net Segmentation and Hybrid Res-Net for Brain Tumor MRI Images Classification

    R. Rajaragavi1,*, S. Palanivel Rajan2

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 1-14, 2022, DOI:10.32604/iasc.2022.021206

    Abstract A brain tumor is a portion of uneven cells, need to be detected earlier for treatment. Magnetic Resonance Imaging (MRI) is a routinely utilized procedure to take brain tumor images. Manual segmentation of tumor is a crucial task and laborious. There is a need for an automated system for segmentation and classification for tumor surgery and medical treatments. This work suggests an efficient brain tumor segmentation and classification based on deep learning techniques. Initially, Squirrel search optimized bidirectional ConvLSTM U-net with attention gate proposed for brain tumour segmentation. Then, the Hybrid Deep ResNet and Inception Model used for classification. Squirrel… More >

  • Open Access

    ARTICLE

    Efficient Morphological Segmentation of Brain Hemorrhage Stroke Lesion Through MultiResUNet

    R. Shijitha1,*, P. Karthigaikumar2, A. Stanly Paul2

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5233-5249, 2022, DOI:10.32604/cmc.2022.020227

    Abstract Brain Hemorrhagic stroke is a serious malady that is caused by the drop in blood flow through the brain and causes the brain to malfunction. Precise segmentation of brain hemorrhage is crucial, so an enhanced segmentation is carried out in this research work. The brain image of various patients has taken using an MRI scanner by the utilization of T1, T2, and FLAIR sequence. This work aims to segment the Brain Hemorrhagic stroke using deep learning-based Multi-resolution UNet (multires UNet) through morphological operations. It is hard to precisely segment the brain lesions to extract the existing region of stroke. This… More >

  • Open Access

    ARTICLE

    MIA-UNet: Multi-Scale Iterative Aggregation U-Network for Retinal Vessel Segmentation

    Linfang Yu, Zhen Qin*, Yi Ding, Zhiguang Qin

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 805-828, 2021, DOI:10.32604/cmes.2021.017332

    Abstract As an important part of the new generation of information technology, the Internet of Things (IoT) has been widely concerned and regarded as an enabling technology of the next generation of health care system. The fundus photography equipment is connected to the cloud platform through the IoT, so as to realize the real-time uploading of fundus images and the rapid issuance of diagnostic suggestions by artificial intelligence. At the same time, important security and privacy issues have emerged. The data uploaded to the cloud platform involves more personal attributes, health status and medical application data of patients. Once leaked, abused… More >

  • Open Access

    ARTICLE

    MRI Brain Tumor Segmentation Using 3D U-Net with Dense Encoder Blocks and Residual Decoder Blocks

    Juhong Tie1,2,*, Hui Peng2, Jiliu Zhou1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 427-445, 2021, DOI:10.32604/cmes.2021.014107

    Abstract The main task of magnetic resonance imaging (MRI) automatic brain tumor segmentation is to automatically segment the brain tumor edema, peritumoral edema, endoscopic core, enhancing tumor core and nonenhancing tumor core from 3D MR images. Because the location, size, shape and intensity of brain tumors vary greatly, it is very difficult to segment these brain tumor regions automatically. In this paper, by combining the advantages of DenseNet and ResNet, we proposed a new 3D U-Net with dense encoder blocks and residual decoder blocks. We used dense blocks in the encoder part and residual blocks in the decoder part. The number… More >

  • Open Access

    ARTICLE

    Residual U-Network for Breast Tumor Segmentation from Magnetic Resonance Images

    Ishu Anand1, Himani Negi1, Deepika Kumar1, Mamta Mittal2, Tai-hoon Kim3,*, Sudipta Roy4

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3107-3127, 2021, DOI:10.32604/cmc.2021.014229

    Abstract Breast cancer positions as the most well-known threat and the main source of malignant growth-related morbidity and mortality throughout the world. It is apical of all new cancer incidences analyzed among females. Two features substantially influence the classification accuracy of malignancy and benignity in automated cancer diagnostics. These are the precision of tumor segmentation and appropriateness of extracted attributes required for the diagnosis. In this research, the authors have proposed a ResU-Net (Residual U-Network) model for breast tumor segmentation. The proposed methodology renders augmented, and precise identification of tumor regions and produces accurate breast tumor segmentation in contrast-enhanced MR images.… More >

  • Open Access

    ARTICLE

    Detection of Precipitation Cloud over the Tibet Based on the Improved U-Net

    Runzhe Tao1, *, Yonghong Zhang1, Lihua Wang1, Pengyan Cai1, Haowen Tan2

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2455-2474, 2020, DOI:10.32604/cmc.2020.011526

    Abstract Aiming at the problem of radar base and ground observation stations on the Tibet is sparsely distributed and cannot achieve large-scale precipitation monitoring. UNet, an advanced machine learning (ML) method, is used to develop a robust and rapid algorithm for precipitating cloud detection based on the new-generation geostationary satellite of FengYun-4A (FY-4A). First, in this algorithm, the real-time multi-band infrared brightness temperature from FY-4A combined with the data of Digital Elevation Model (DEM) has been used as predictor variables for our model. Second, the efficiency of the feature was improved by changing the traditional convolution layer serial connection method of… More >

Displaying 31-40 on page 4 of 44. Per Page