Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (89)
  • Open Access

    ARTICLE

    Fractional Gradient Descent RBFNN for Active Fault-Tolerant Control of Plant Protection UAVs

    Lianghao Hua1,2, Jianfeng Zhang1,*, Dejie Li3, Xiaobo Xi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2129-2157, 2024, DOI:10.32604/cmes.2023.030535

    Abstract With the increasing prevalence of high-order systems in engineering applications, these systems often exhibit significant disturbances and can be challenging to model accurately. As a result, the active disturbance rejection controller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmanned aerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances and the possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address these issues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neural network (RBFNN) with a second-order ADRC and leverages a… More > Graphic Abstract

    Fractional Gradient Descent RBFNN for Active Fault-Tolerant Control of Plant Protection UAVs

  • Open Access

    ARTICLE

    Outage Analysis of Optimal UAV Cooperation with IRS via Energy Harvesting Enhancement Assisted Computational Offloading

    Baofeng Ji1,2,3,*, Ying Wang1,2,3, Weixing Wang1, Shahid Mumtaz4, Charalampos Tsimenidis4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1885-1905, 2024, DOI:10.32604/cmes.2023.030872

    Abstract The utilization of mobile edge computing (MEC) for unmanned aerial vehicle (UAV) communication presents a viable solution for achieving high reliability and low latency communication. This study explores the potential of employing intelligent reflective surfaces (IRS) and UAVs as relay nodes to efficiently offload user computing tasks to the MEC server system model. Specifically, the user node accesses the primary user spectrum, while adhering to the constraint of satisfying the primary user peak interference power. Furthermore, the UAV acquires energy without interrupting the primary user’s regular communication by employing two energy harvesting schemes, namely time switching (TS) and power splitting… More >

  • Open Access

    ARTICLE

    Energy Efficiency Maximization in Mobile Edge Computing Networks via IRS assisted UAV Communications

    Ying Zhang1, Weiming Niu2, Supu Xiu1,3, Guangchen Mu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1865-1884, 2024, DOI:10.32604/cmes.2023.030114

    Abstract In this paper, we investigate the energy efficiency maximization for mobile edge computing (MEC) in intelligent reflecting surface (IRS) assisted unmanned aerial vehicle (UAV) communications. In particular, UAV can collect the computing tasks of the terrestrial users and transmit the results back to them after computing. We jointly optimize the users’ transmitted beamforming and uploading ratios, the phase shift matrix of IRS, and the UAV trajectory to improve the energy efficiency. The formulated optimization problem is highly non-convex and difficult to be solved directly. Therefore, we decompose the original problem into three sub-problems. We first propose the successive convex approximation… More >

  • Open Access

    REVIEW

    A Survey on Sensor- and Communication-Based Issues of Autonomous UAVs

    Pavlo Mykytyn1,2,*, Marcin Brzozowski1, Zoya Dyka1,2, Peter Langendoerfer1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1019-1050, 2024, DOI:10.32604/cmes.2023.029075

    Abstract The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasing steadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader than ever before. However, increasing the complexity of UAVs and decreasing the cost, both contribute to a lack of implemented security measures and raise new security and safety concerns. For instance, the issue of implausible or tampered UAV sensor measurements is barely addressed in the current research literature and thus, requires more attention from the research community. The goal of this survey is to extensively review… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach to Classify the Plant Leaf Species

    Javed Rashid1,2, Imran Khan1, Irshad Ahmed Abbasi3, Muhammad Rizwan Saeed4, Mubbashar Saddique5,*, Mohamed Abbas6,7

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3897-3920, 2023, DOI:10.32604/cmc.2023.040356

    Abstract Many plant species have a startling degree of morphological similarity, making it difficult to split and categorize them reliably. Unknown plant species can be challenging to classify and segment using deep learning. While using deep learning architectures has helped improve classification accuracy, the resulting models often need to be more flexible and require a large dataset to train. For the sake of taxonomy, this research proposes a hybrid method for categorizing guava, potato, and java plum leaves. Two new approaches are used to form the hybrid model suggested here. The guava, potato, and java plum plant species have been successfully… More >

  • Open Access

    ARTICLE

    Siamese Dense Pixel-Level Fusion Network for Real-Time UAV Tracking

    Zhenyu Huang1,2, Gun Li2, Xudong Sun1, Yong Chen1, Jie Sun1, Zhangsong Ni1,*, Yang Yang1,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3219-3238, 2023, DOI:10.32604/cmc.2023.039489

    Abstract Onboard visual object tracking in unmanned aerial vehicles (UAVs) has attracted much interest due to its versatility. Meanwhile, due to high precision, Siamese networks are becoming hot spots in visual object tracking. However, most Siamese trackers fail to balance the tracking accuracy and time within onboard limited computational resources of UAVs. To meet the tracking precision and real-time requirements, this paper proposes a Siamese dense pixel-level network for UAV object tracking named SiamDPL. Specifically, the Siamese network extracts features of the search region and the template region through a parameter-shared backbone network, then performs correlation matching to obtain the candidate… More >

  • Open Access

    ARTICLE

    Honeypot Game Theory against DoS Attack in UAV Cyber

    Shangting Miao1, Yang Li2,*, Quan Pan2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2745-2762, 2023, DOI:10.32604/cmc.2023.037257

    Abstract A space called Unmanned Aerial Vehicle (UAV) cyber is a new environment where UAV, Ground Control Station (GCS) and business processes are integrated. Denial of service (DoS) attack is a standard network attack method, especially suitable for attacking the UAV cyber. It is a robust security risk for UAV cyber and has recently become an active research area. Game theory is typically used to simulate the existing offensive and defensive mechanisms for DoS attacks in a traditional network. In addition, the honeypot, an effective security vulnerability defense mechanism, has not been widely adopted or modeled for defense against DoS attack… More >

  • Open Access

    Time-Efficient Blockchain Framework for Improved Data Transmission in Autonomous Systems

    Abdulrahman M. Abdulghani, Wilbur L. Walters, Khalid H. Abed*

    Journal of Blockchain and Intelligent Computing, Vol.1, pp. 1-13, 2023, DOI:10.32604/jbic.2023.041340

    Abstract Blockchain technology is increasingly used to design trustworthy and reliable platforms for sharing information in a plethora of industries. It is a decentralized system that acts as an immutable record for storing data. It has the potential to disrupt a range of fields that rely on data, including autonomous systems like Unmanned Aerial Vehicles (UAVs). In this paper, we propose a framework based on blockchain and distributed ledger technology to improve transmission time and provide a secured and trusted method for UAVs to transfer data to the consumer efficiently while maintaining data reliability. The results show that our framework enables… More >

  • Open Access

    ARTICLE

    IRS Assisted UAV Communications against Proactive Eavesdropping in Mobile Edge Computing Networks

    Ying Zhang1,*, Weiming Niu2, Leibing Yan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 885-902, 2024, DOI:10.32604/cmes.2023.029234

    Abstract In this paper, we consider mobile edge computing (MEC) networks against proactive eavesdropping. To maximize the transmission rate, IRS assisted UAV communications are applied. We take the joint design of the trajectory of UAV, the transmitting beamforming of users, and the phase shift matrix of IRS. The original problem is strong non-convex and difficult to solve. We first propose two basic modes of the proactive eavesdropper, and obtain the closed-form solution for the boundary conditions of the two modes. Then we transform the original problem into an equivalent one and propose an alternating optimization (AO) based method to obtain a… More >

  • Open Access

    ARTICLE

    PanopticUAV: Panoptic Segmentation of UAV Images for Marine Environment Monitoring

    Yuling Dou1, Fengqin Yao1, Xiandong Wang1, Liang Qu2, Long Chen3, Zhiwei Xu4, Laihui Ding4, Leon Bevan Bullock1, Guoqiang Zhong1, Shengke Wang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 1001-1014, 2024, DOI:10.32604/cmes.2023.027764

    Abstract UAV marine monitoring plays an essential role in marine environmental protection because of its flexibility and convenience, low cost and convenient maintenance. In marine environmental monitoring, the similarity between objects such as oil spill and sea surface, Spartina alterniflora and algae is high, and the effect of the general segmentation algorithm is poor, which brings new challenges to the segmentation of UAV marine images. Panoramic segmentation can do object detection and semantic segmentation at the same time, which can well solve the polymorphism problem of objects in UAV ocean images. Currently, there are few studies on UAV marine image recognition… More >

Displaying 11-20 on page 2 of 89. Per Page