Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    Vehicle Detection and Tracking in UAV Imagery via YOLOv3 and Kalman Filter

    Shuja Ali1, Ahmad Jalal1, Mohammed Hamad Alatiyyah2, Khaled Alnowaiser3, Jeongmin Park4,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1249-1265, 2023, DOI:10.32604/cmc.2023.038114 - 08 June 2023

    Abstract Unmanned aerial vehicles (UAVs) can be used to monitor traffic in a variety of settings, including security, traffic surveillance, and traffic control. Numerous academics have been drawn to this topic because of the challenges and the large variety of applications. This paper proposes a new and efficient vehicle detection and tracking system that is based on road extraction and identifying objects on it. It is inspired by existing detection systems that comprise stationary data collectors such as induction loops and stationary cameras that have a limited field of view and are not mobile. The goal… More >

  • Open Access

    ARTICLE

    MEB-YOLO: An Efficient Vehicle Detection Method in Complex Traffic Road Scenes

    Yingkun Song1, Shunhe Hong1, Chentao Hu1, Pingan He2, Lingbing Tao1, Zhixin Tie1,3,*, Chengfu Ding4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5761-5784, 2023, DOI:10.32604/cmc.2023.038910 - 29 April 2023

    Abstract Rapid and precise vehicle recognition and classification are essential for intelligent transportation systems, and road target detection is one of the most difficult tasks in the field of computer vision. The challenge in real-time road target detection is the ability to properly pinpoint relatively small vehicles in complicated environments. However, because road targets are prone to complicated backgrounds and sparse features, it is challenging to detect and identify vehicle kinds fast and reliably. We suggest a new vehicle detection model called MEB-YOLO, which combines Mosaic and MixUp data augmentation, Efficient Channel Attention (ECA) attention mechanism,… More >

  • Open Access

    ARTICLE

    3D Vehicle Detection Algorithm Based on Multimodal Decision-Level Fusion

    Peicheng Shi1,*, Heng Qi1, Zhiqiang Liu1, Aixi Yang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2007-2023, 2023, DOI:10.32604/cmes.2023.022304 - 23 November 2022

    Abstract 3D vehicle detection based on LiDAR-camera fusion is becoming an emerging research topic in autonomous driving. The algorithm based on the Camera-LiDAR object candidate fusion method (CLOCs) is currently considered to be a more effective decision-level fusion algorithm, but it does not fully utilize the extracted features of 3D and 2D. Therefore, we proposed a 3D vehicle detection algorithm based on multimodal decision-level fusion. First, project the anchor point of the 3D detection bounding box into the 2D image, calculate the distance between 2D and 3D anchor points, and use this distance as a new… More > Graphic Abstract

    3D Vehicle Detection Algorithm Based on Multimodal Decision-Level Fusion

  • Open Access

    ARTICLE

    Optimal Deep Convolutional Neural Network for Vehicle Detection in Remote Sensing Images

    Saeed Masoud Alshahrani1, Saud S. Alotaibi2, Shaha Al-Otaibi3, Mohamed Mousa4, Anwer Mustafa Hilal5,*, Amgad Atta Abdelmageed5, Abdelwahed Motwakel5, Mohamed I. Eldesouki6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3117-3131, 2023, DOI:10.32604/cmc.2023.033038 - 31 October 2022

    Abstract Object detection (OD) in remote sensing images (RSI) acts as a vital part in numerous civilian and military application areas, like urban planning, geographic information system (GIS), and search and rescue functions. Vehicle recognition from RSIs remained a challenging process because of the difficulty of background data and the redundancy of recognition regions. The latest advancements in deep learning (DL) approaches permit the design of effectual OD approaches. This study develops an Artificial Ecosystem Optimizer with Deep Convolutional Neural Network for Vehicle Detection (AEODCNN-VD) model on Remote Sensing Images. The proposed AEODCNN-VD model focuses on… More >

  • Open Access

    ARTICLE

    Robust Vehicle Detection Based on Improved You Look Only Once

    Sunil Kumar1, Manisha Jailia1, Sudeep Varshney2, Nitish Pathak3, Shabana Urooj4,*, Nouf Abd Elmunim4

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3561-3577, 2023, DOI:10.32604/cmc.2023.029999 - 31 October 2022

    Abstract Vehicle detection is still challenging for intelligent transportation systems (ITS) to achieve satisfactory performance. The existing methods based on one stage and two-stage have intrinsic weakness in obtaining high vehicle detection performance. Due to advancements in detection technology, deep learning-based methods for vehicle detection have become more popular because of their higher detection accuracy and speed than the existing algorithms. This paper presents a robust vehicle detection technique based on Improved You Look Only Once (RVD-YOLOv5) to enhance vehicle detection accuracy. The proposed method works in three phases; in the first phase, the K-means algorithm… More >

  • Open Access

    ARTICLE

    Vehicle Detection in Challenging Scenes Using CenterNet Based Approach

    Ayesha1, Muhammad Javed Iqbal1, Iftikhar Ahmad2,*, Madini O. Alassafi2, Ahmed S. Alfakeeh2, Ahmed Alhomoud3

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3647-3661, 2023, DOI:10.32604/cmc.2023.020916 - 31 October 2022

    Abstract Contemporarily numerous analysts labored in the field of Vehicle detection which improves Intelligent Transport System (ITS) and reduces road accidents. The major obstacles in automatic detection of tiny vehicles are due to occlusion, environmental conditions, illumination, view angles and variation in size of objects. This research centers on tiny and partially occluded vehicle detection and identification in challenging scene specifically in crowed area. In this paper we present comprehensive methodology of tiny vehicle detection using Deep Neural Networks (DNN) namely CenterNet. Substantially DNN disregards objects that are small in size 5 pixels and more false… More >

  • Open Access

    ARTICLE

    Deep Neural Network Based Vehicle Detection and Classification of Aerial Images

    Sandeep Kumar1, Arpit Jain2,*, Shilpa Rani3, Hammam Alshazly4, Sahar Ahmed Idris5, Sami Bourouis6

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 119-131, 2022, DOI:10.32604/iasc.2022.024812 - 15 April 2022

    Abstract The detection of the objects in the ariel image has a significant impact on the field of parking space management, traffic management activities and surveillance systems. Traditional vehicle detection algorithms have some limitations as these algorithms are not working with the complex background and with the small size of object in bigger scenes. It is observed that researchers are facing numerous problems in vehicle detection and classification, i.e., complicated background, the vehicle’s modest size, other objects with similar visual appearances are not correctly addressed. A robust algorithm for vehicle detection and classification has been proposed… More >

  • Open Access

    ARTICLE

    Image and Feature Space Based Domain Adaptation for Vehicle Detection

    Ying Tian1, *, Libing Wang1, Hexin Gu2, Lin Fan3

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2397-2412, 2020, DOI:10.32604/cmc.2020.011386 - 16 September 2020

    Abstract The application of deep learning in the field of object detection has experienced much progress. However, due to the domain shift problem, applying an off-the-shelf detector to another domain leads to a significant performance drop. A large number of ground truth labels are required when using another domain to train models, demanding a large amount of human and financial resources. In order to avoid excessive resource requirements and performance drop caused by domain shift, this paper proposes a new domain adaptive approach to cross-domain vehicle detection. Our approach improves the cross-domain vehicle detection model from More >

  • Open Access

    ARTICLE

    An Early Warning System for Curved Road Based on OV7670 Image Acquisition and STM32

    Xiaoliang Wang1, *, Wenhua Song1, Bowei Zhang1, Brandon Mausler2, Frank Jiang1, 3

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 135-147, 2019, DOI:10.32604/cmc.2019.05687

    Abstract Nowadays, the number of vehicles in China has increased significantly. The increase of the number of vehicles has also led to the increasingly complex traffic situation and the urgent safety measures in need. However, the existing early warning devices such as geomagnetic, ultrasonic and infrared detection have some shortcomings like difficult installation and maintenance. In addition, geomagnetic detection will damage the road surface, while ultrasonic and infrared detection will be greatly affected by the environment. Considering the shortcomings of the existing solutions, this paper puts forward a solution of early warning for vehicle turning meeting More >

Displaying 11-20 on page 2 of 19. Per Page