Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (677)
  • Open Access

    ARTICLE

    Chance-Constrained Optimization of Pumping in Coastal Aquifers by Stochastic Boundary Element Method and Genetic Algorithm

    B. Amaziane1, A. Naji2, D. Ouazar3, A. H.-D. Cheng4

    CMC-Computers, Materials & Continua, Vol.2, No.2, pp. 85-96, 2005, DOI:10.3970/cmc.2005.002.085

    Abstract In this paper the optimization of groundwater pumping in coastal aquifers under the threat of saltwater intrusion is investigated. The aquifer is inhomogeneous and contains several hydraulic conductivities zones. The aquifer data such as the hydraulic conductivities are uncertain, but with their expected mean and standard deviation values given. A stochastic boundary element method based on the perturbation technique is employed as the simulation tool. The stochastic optimization is handled by the chance-constrained programming. Genetic algorithm is selected as the optimization tool. Numerical examples of deterministic and stochastic problems are provided to demonstrate the feasibility More >

  • Open Access

    ARTICLE

    MLPG Method Based on Rankine Source Solution for Simulating Nonlinear Water Waves

    Q.W. Ma1

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.2, pp. 193-210, 2005, DOI:10.3970/cmes.2005.009.193

    Abstract Recently, the MLPG (Meshless Local Petrov-Galerkin Method) method has been successfully extended to simulating nonlinear water waves [Ma, (2005)]. In that paper, the author employed the Heaviside step function as the test function to formulate the weak form over local sub-domains, acquiring an expression in terms of pressure gradient. In this paper, the solution for Rankine sources is taken as the test function and the local weak form is expressed in term of pressure rather than pressure gradient. Apart from not including pressure gradient, velocity gradient is also eliminated from the weak form. In addition, More >

  • Open Access

    ARTICLE

    Intrahost distribution and trasmission of a new species of cyclopoid copepod endosymbiotic to a freshwater snail, Pomacea canaliculata (Caenogastropoda, Ampullariidae) from Argentina

    C. D. GAMARRA-LUQUES, I. A. VEGA, E. KOCH, A. CASTRO-VAZQUEZ

    BIOCELL, Vol.28, No.2, pp. 155-164, 2004, DOI:10.32604/biocell.2004.28.155

    Abstract A new species of cyclopoid copepod, Ozmana huarpium, is described as a symbiont to Pomacea canaliculata (Lamarck 1822) (Caenogastropoda, Ampullariidae). Rather large numbers (about one hundred copepods per snail) were found, although there was no evidence of harm to the host. To our knowledge, O. haemophila (symbiont to P. maculata), and the currently described species, O. huarpium, are the only copepod species ever recorded as endosymbionts to freshwater invertebrates. While O. haemophila is restricted to the haemocoel of its host, O. huarpium predominate in the penis sheath, the ctenidium and the mantle cavity, figuring in these pallial organs 63-65 % of total More >

  • Open Access

    ARTICLE

    Radial Basis Function and Genetic Algorithms for Parameter Identification to Some Groundwater Flow Problems

    B. Amaziane1, A. Naji2, D. Ouazar3

    CMC-Computers, Materials & Continua, Vol.1, No.2, pp. 117-128, 2004, DOI:10.3970/cmc.2004.001.117

    Abstract In this paper, a meshless method based on Radial Basis Functions (RBF) is coupled with genetic algorithms for parameter identification to some selected groundwater flow applications. The treated examples are generated by the diffusion equation with some specific boundary conditions describing the groundwater fluctuation in a leaky confined aquifer system near open tidal water. To select the best radial function interpolation and show the powerful of the method in comparison to domain based discretization methods, Multiquadric (MQ), Thin-Plate Spline (TPS) and Conical type functions are investigated and compared to finite difference results or analytical one. More >

  • Open Access

    ARTICLE

    Water relations and leaf growth rate of three Agropyron genotypes under water stress

    MARÍA G. GARCÍA, CARLOS A. BUSSO, PABLO POLCI, NORBERTO L. GARCÍA GIROU, VIVIANA ECHENIQUE

    BIOCELL, Vol.26, No.3, pp. 309-317, 2002, DOI:10.32604/biocell.2002.26.309

    Abstract The effects of water stress on leaf water relations and growth are reported for three perennial tussock grass genotypes under glasshouse conditions. Studies were performed in genotypes El Palmar INTA and Selección Anguil of Agropyron scabrifolium (Döell) Parodi, and El Vizcachero of A. elongatum (Host) Beauv. Agropyron scabrifolium El Palmar INTA is native to a region with warm-temperate and humid climate without a dry season, and an average annual precipitation of 900 mm. Agropyron scabrifolium Selección Anguil comes from a region with a sub-humid, dry to semiarid climate and a mean annual precipitation of 600 mm. Agropyron elongatum is a… More >

  • Open Access

    ARTICLE

    An Innovative Open Boundary Treatment for Nonlinear Water Waves in a Numerical Wave Tank

    S.-P. Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.2, pp. 227-236, 2001, DOI:10.3970/cmes.2001.002.227

    Abstract Problems defined on infinite domains must be treated on a finite computational domain. The treatment of the artificially placed boundaries (usually referred to as open boundaries) of such domain truncations can be quite subtle; an over truncation would normally result in large, undesirable reflection of signals back to the computational domain whereas an under truncation would imply an injudicious use of computational resources. In particular, problems occur when strongly nonlinear free surface waves generated in a numerical wave tank are passing through such an open boundary.
    In this paper, some recent numerical test results of… More >

  • Open Access

    ARTICLE

    A Boundary Element Model for Underwater Acoustics in Shallow Water

    J.A.F. Santiago1, L.C. Wrobel2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 73-80, 2000, DOI:10.3970/cmes.2000.001.375

    Abstract This work presents a boundary element formulation for two-dimensional acoustic wave propagation in shallow water. It is assumed that the velocity of sound in water is constant, the free surface is horizontal, and the seabed is irregular. The boundary conditions of the problem are that the sea bottom is rigid and the free surface pressure is atmospheric.
    For regions of constant depth, fundamental solutions in the form of infinite series can be employed in order to avoid the discretisation of both the free surface and bottom boundaries. When the seabed topography is irregular, it is More >

Displaying 671-680 on page 68 of 677. Per Page