Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (412)
  • Open Access

    ARTICLE

    Adaptive Momentum-Backpropagation Algorithm for Flood Prediction and Management in the Internet of Things

    Jayaraj Thankappan1, Delphin Raj Kesari Mary2, Dong Jin Yoon3, Soo-Hyun Park4,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1053-1079, 2023, DOI:10.32604/cmc.2023.038437

    Abstract Flooding is a hazardous natural calamity that causes significant damage to lives and infrastructure in the real world. Therefore, timely and accurate decision-making is essential for mitigating flood-related damages. The traditional flood prediction techniques often encounter challenges in accuracy, timeliness, complexity in handling dynamic flood patterns and leading to substandard flood management strategies. To address these challenges, there is a need for advanced machine learning models that can effectively analyze Internet of Things (IoT)-generated flood data and provide timely and accurate flood predictions. This paper proposes a novel approach-the Adaptive Momentum and Backpropagation (AM-BP) algorithm-for flood prediction and management in… More >

  • Open Access

    ARTICLE

    An Effective Runge-Kutta Optimizer Based on Adaptive Population Size and Search Step Size

    Ala Kana, Imtiaz Ahmad*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3443-3464, 2023, DOI:10.32604/cmc.2023.040775

    Abstract A newly proposed competent population-based optimization algorithm called RUN, which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism, has gained wider interest in solving optimization problems. However, in high-dimensional problems, the search capabilities, convergence speed, and runtime of RUN deteriorate. This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN. Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms. Unlike the original RUN where population size is fixed throughout the search process, Adaptive-RUN automatically… More >

  • Open Access

    ARTICLE

    A Degradation Type Adaptive and Deep CNN-Based Image Classification Model for Degraded Images

    Huanhua Liu, Wei Wang*, Hanyu Liu, Shuheng Yi, Yonghao Yu, Xunwen Yao

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 459-472, 2024, DOI:10.32604/cmes.2023.029084

    Abstract Deep Convolutional Neural Networks (CNNs) have achieved high accuracy in image classification tasks, however, most existing models are trained on high-quality images that are not subject to image degradation. In practice, images are often affected by various types of degradation which can significantly impact the performance of CNNs. In this work, we investigate the influence of image degradation on three typical image classification CNNs and propose a Degradation Type Adaptive Image Classification Model (DTA-ICM) to improve the existing CNNs’ classification accuracy on degraded images. The proposed DTA-ICM comprises two key components: a Degradation Type Predictor (DTP) and a Degradation Type… More >

  • Open Access

    ARTICLE

    Research and Application of a Multi-Field Co-Simulation Data Extraction Method Based on Adaptive Infinitesimal Element

    Changfu Wan1,2, Wenqiang Li1,2,*, Sitong Ling1,2, Yingdong Liu1,2, Jiahao Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 321-348, 2024, DOI:10.32604/cmes.2023.029053

    Abstract Regarding the spatial profile extraction method of a multi-field co-simulation dataset, different extraction directions, locations, and numbers of profiles will greatly affect the representativeness and integrity of data. In this study, a multi-field co-simulation data extraction method based on adaptive infinitesimal elements is proposed. The multi-field co-simulation dataset based on related infinitesimal elements is constructed, and the candidate directions of data profile extraction undergo dimension reduction by principal component analysis to determine the direction of data extraction. Based on the fireworks algorithm, the data profile with optimal representativeness is searched adaptively in different data extraction intervals to realize the adaptive… More > Graphic Abstract

    Research and Application of a Multi-Field Co-Simulation Data Extraction Method Based on Adaptive Infinitesimal Element

  • Open Access

    ARTICLE

    Adaptive Multi-Updating Strategy Based Particle Swarm Optimization

    Dongping Tian1,*, Bingchun Li1, Jing Liu1, Chen Liu1, Ling Yuan1, Zhongzhi Shi2

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2783-2807, 2023, DOI:10.32604/iasc.2023.039531

    Abstract Particle swarm optimization (PSO) is a stochastic computation technique that has become an increasingly important branch of swarm intelligence optimization. However, like other evolutionary algorithms, PSO also suffers from premature convergence and entrapment into local optima in dealing with complex multimodal problems. Thus this paper puts forward an adaptive multi-updating strategy based particle swarm optimization (abbreviated as AMS-PSO). To start with, the chaotic sequence is employed to generate high-quality initial particles to accelerate the convergence rate of the AMS-PSO. Subsequently, according to the current iteration, different update schemes are used to regulate the particle search process at different evolution stages.… More >

  • Open Access

    PROCEEDINGS

    Efficient Multigrid Method Based on Adaptive Weighted Jacobi in Isogeometric Analysis

    ShiJie Luo1, Feng Yang1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09474

    Abstract The isogeometric analysis Method (IGA) is an efficient and accurate engineering analysis method. However, in order to obtain accurate analysis results, the grid must be refined, and the increase of the number of refinements will lead to large-scale equations, which will increase the computational cost. Compared with the traditional equation solvers such as preconditioned conjugate gradient method (PCG), generalized minimal residual (GMRES), the advantage of multigrid method is that the convergence rate is independent of grid scale when solving large-scale equations. This paper presents an adaptive weighted Jacobi method to improve the convergence of geometric multigrid method to efficiently solve… More >

  • Open Access

    PROCEEDINGS

    A Process Simulation Model of Oil and Gas Gathering System for Digital Requirements

    Jie Chen1, Wei Wang1,*, Wenyuan Sun1, Yuming He1, Shunchen Miu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2022.08801

    Abstract Characteristic parameters of oil and gas gathering system (OGGS), such as the liquid holdup, flow rate and pressure of wells, fluctuate dynamically during the production cycle. Furthermore, with the call for energy transition and digitalization, it is critical to grasp the operation status of OGGS in real time. A generalized process simulation model for multi-phase gathering system was established by coupling several models (mass balance, pressure balance, hydraulic and thermal model of a single pipe, power and thermal equipment model, etc.). Because the hydraulic equation of the pipe contains nonlinear terms, the hydraulic model of pipe was linearized, and the… More >

  • Open Access

    RETRACTION

    Retraction: An Adaptive BWO Algorithm with RSA for Anomaly Detection in VANETs

    Y. Sarada Devi, M. Roopa

    Journal of Cyber Security, Vol.4, No.4, pp. 299-299, 2022, DOI:10.32604/jcs.2022.040534

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Research on Reactive Power Optimization of Offshore Wind Farms Based on Improved Particle Swarm Optimization

    Zhonghao Qian1, Hanyi Ma1, Jun Rao2, Jun Hu1, Lichengzi Yu2,*, Caoyi Feng1, Yunxu Qiu1, Kemo Ding1

    Energy Engineering, Vol.120, No.9, pp. 2013-2027, 2023, DOI:10.32604/ee.2023.028859

    Abstract The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms. To improve the voltage stability and reactive power economy of wind farms, the improved particle swarm optimization is used to optimize the reactive power planning in wind farms. First, the power flow of offshore wind farms is modeled, analyzed and calculated. To improve the global search ability and local optimization ability of particle swarm optimization, the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor. Taking the minimum active power loss of the offshore wind… More >

  • Open Access

    ARTICLE

    Muti-Fusion Swarm Intelligence Optimization Algorithm in Base Station Coverage Optimization Problems

    Zhenyu Yan1,*, Haotian Bian2

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2241-2257, 2023, DOI:10.32604/csse.2023.040603

    Abstract As millimeter waves will be widely used in the Internet of Things (IoT) and Telematics to provide high bandwidth communication and mass connectivity, the coverage optimization of base stations can effectively improve the quality of communication services. How to optimize the convergence speed of the base station coverage solution is crucial for IoT service providers. This paper proposes the Muti-Fusion Sparrow Search Algorithm (MFSSA) optimize the situation to address the problem of discrete coverage maximization and rapid convergence. Firstly, the initial swarm diversity is enriched using a sine chaotic map, and dynamic adaptive weighting is added to the discoverer location… More >

Displaying 21-30 on page 3 of 412. Per Page