Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (439)
  • Open Access

    ARTICLE

    An Advanced ACA/BEM for Solving 2D Large-Scale Elastic Problems with Multi-Connected Domains

    T. Gortsas1, S.V. Tsinopoulos2, D. Polyzos1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.4, pp. 321-343, 2015, DOI:10.3970/cmes.2015.107.321

    Abstract An advanced Boundary Element method (BEM) accelerated via Adaptive Cross Approximation (ACA) and Hierarchical Matrices (HM) techniques is presented for the solution of large-scale elastostatic problems with multi-connected domains like in fiber reinforced composite materials. Although the proposed ACA/ BEM is demonstrated for two-dimensional (2D) problems, it is quite general and it can be used for 3D problems. Different forms of ACA technique are employed for exploring their efficiency when they combined with a BEM code. More precisely, the fully and partially pivoted ACA with and without recompression are utilized, while the solution of the More >

  • Open Access

    ARTICLE

    An Explicit Time Marching Technique With Solution-Adaptive Time Integration Parameters

    Delfim Soares Jr.1

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.3, pp. 223-247, 2015, DOI:10.3970/cmes.2015.107.223

    Abstract In this work, an explicit time marching procedure, with solution-adaptive time integration parameters, is introduced for the analysis of hyperbolic models. The proposed technique is conditionally-stable, second-order accurate and it has controllable algorithm dissipation, which locally adapts at each time step, according to the computed solution. Thus, spurious modes can be more effectively dissipated and accuracy is improved. Since this is an explicit time integration technique, the new procedure is very efficient, requiring no system of equations to be dealt with at each time-step. Moreover, the technique is simple and easy to implement, being based More >

  • Open Access

    ARTICLE

    Hybrid Adaptive Particle Swarm Optimized Particle Filter for Integrated Navigation System

    Zhimin Chen1,2, Yuanxin Qu1, Tongshuang Zhang1, Xiaoshu Bai1, Xiaohong Tao1, Yong Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.6, pp. 379-393, 2015, DOI:10.3970/cmes.2015.106.379

    Abstract Particle swarm optimization algorithm based particle filter is trapping in local optimum easily, it is not able to satisfy the requirement of modern integrated navigation system. In order to solve the problem, A novel particle filter algorithm based on hybrid adaptive particle swarm optimization(HPSO-PF) is presented in this paper. This improved particle filter will conduce to finding the ideal solution domain by making use of the global convergence of artificial fish swarm and enhancement of fusion precision by guiding particles to move toward the high likelihood area through particle swarm optimization. Finally different models are More >

  • Open Access

    ARTICLE

    Optimal Adaptive Genetic Algorithm Based Hybrid Signcryption Algorithm for Information Security

    R. Sujatha1, M. Ramakrishnan2, N. Duraipandian3, B. Ramakrishnan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.1, pp. 47-68, 2015, DOI:10.3970/cmes.2015.105.047

    Abstract The functions of digital signature and public key encryption are simultaneously fulfilled by signcryption, which is a cryptographic primitive. To securely communicate very large messages, the cryptographic primitive called signcryption efficiently implements the same and while most of the public key based systems are suitable for small messages, hybrid encryption (KEM-DEM) provides a competent and practical way. In this paper, we develop a hybrid signcryption technique. The hybrid signcryption is based on the KEM and DEM technique. The KEM algorithm utilizes the KDF technique to encapsulate the symmetric key. The DEM algorithm utilizes the Adaptive More >

  • Open Access

    ARTICLE

    Adaptive Differentiators via Second Order Sliding Mode for a Fixed Wing Aircraft

    M. Zaouche, A. Beloula, R. Louali1, S. Bouaziz2, M. Hamerlain3

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.3, pp. 159-184, 2015, DOI:10.3970/cmes.2015.104.159

    Abstract Safety automation of complex mobile systems is a current topic issue in industry and research laboratories, especially in aeronautics. The dynamic models of these systems are nonlinear, Multi-Input Multi-Output (MIMO) and tightly coupled. The nonlinearity resides in the dynamic equations and also in the aerodynamic coefficients’ variability.
    This paper is devoted to developing the piloting law based on the combination of the robust differentiator with a dynamic adaptation of the gains and the robust controller via second order sliding mode, by using an aircraft in virtual simulated environments.
    To deal with the design of an… More >

  • Open Access

    ARTICLE

    Image Segmentation Method for Complex Vehicle Lights Based on Adaptive Significance Level Set

    Jia Dongyao1,2, Zhu Huaihua1, Ai Yanke1, Zou Shengxiong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.6, pp. 411-427, 2014, DOI:10.3970/cmes.2014.103.411

    Abstract The existing study on the image segmentation methods based on the image of vehicle lights is insufficient both at home and abroad, and its segmentation efficiency and accuracy is low as well. On the basis of the analysis of the regional characteristics of vehicle lights and a level set model, an image segmentation method for complex vehicle lights based on adaptive significance level set contour model is proposed in this paper. Adaptive positioning algorithm of the significant initial contour curve based on two-dimensional convex hull is designed to obtain the initial position of evolution curve,… More >

  • Open Access

    ARTICLE

    Analysis of 3D Anisotropic Solids Using Fundamental Solutions Based on Fourier Series and the Adaptive Cross Approximation Method

    R. Q. Rodríguez1,2, C. L. Tan2, P. Sollero1, E. L. Albuquerque3

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.5, pp. 359-372, 2014, DOI:10.3970/cmes.2014.102.359

    Abstract The efficient evaluation of the fundamental solution for 3D general anisotropic elasticity is a subject of great interest in the BEM community due to its mathematical complexity. Recently, Tan, Shiah, andWang (2013) have represented the algebraically explicit form of it developed by Ting and Lee (Ting and Lee, 1997; Lee, 2003) by a computational efficient double Fourier series. The Fourier coefficients are numerically evaluated only once for a specific material and are independent of the number of field points in the BEM analysis. This work deals with the application of hierarchical matrices and low rank More >

  • Open Access

    ARTICLE

    An Adaptive Discretization of Incompressible Flow using Node-Based Local Meshes

    Weiwei Zhang1, Yufeng Nie1, Li Cai1, Nan Qi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.1, pp. 55-82, 2014, DOI:10.3970/cmes.2014.102.055

    Abstract In this paper, we derive an adaptive mesh generation method for discretizing the incompressible flow using node-based local grids. The flow problem is described by the Stokes equations which are solved by a stabilized low-order P1-P1 (linear velocity, linear pressure) mixed finite element method. The proposed node-based adaptive mesh generation method consists of four components: mesh size modification, a node placement procedure, a node-based local mesh generation strategy and an error estimation technique, which are combined so as to guarantee obtaining a conforming refined/coarsened mesh. The nodes are considered as particles with interaction forces, which… More >

  • Open Access

    ARTICLE

    Analysis of Multiple Inclusion Potential Problems by the Adaptive Cross Approximation Method

    R. Q. Rodríguez1, A.F. Galvis1, P. Sollero1, E. L. Albuquerque2

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.4, pp. 259-274, 2013, DOI:10.3970/cmes.2013.096.259

    Abstract Over recent years the rapid evolution of the computational power has motivated the development of new numerical techniques to account for engineering solutions. The Boundary Element Method (BEM) has shown to be a powerful numeric tool for the analysis and solution of many physical and engineering problems. However, BEM fully populated and non-symmetric system matrices implies in higher memory requirements and solution times. This work analyze the application of hierarchical matrices and low rank approximations, applying the Adaptive Cross Approximation - ACA, to multiple inclusion potential problems. The use of hierarchical format is aimed at More >

  • Open Access

    ARTICLE

    Novel Graph-based Adaptive Triangular Mesh Refinement for Finite-volume Discretizations

    Sanderson L. Gonzaga de Oliveira1, Mauricio Kischinhevsky2, João Manuel R. S. Tavares3

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.2, pp. 119-141, 2013, DOI:10.3970/cmes.2013.095.119

    Abstract A novel graph-based adaptive mesh refinement technique for triangular finite-volume discretizations in order to solve second-order partial differential equations is described. Adaptive refined meshes are built in order to solve timedependent problems aiming low computational costs. In the approach proposed, flexibility to link and traverse nodes among neighbors in different levels of refinement is admitted; and volumes are refined using an approach that allows straightforward and strictly local update of the data structure. In addition, linear equation system solvers based on the minimization of functionals can be easily used; specifically, the Conjugate Gradient Method. Numerical More >

Displaying 371-380 on page 38 of 439. Per Page