Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    Fabricating Cationic Lignin Hydrogels for Dye Adsorption

    Chao Wang, Xuezhen Feng, Wanbing Li, Shibin Shang*, Haibo Zhang*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1793-1805, 2023, DOI:10.32604/jrm.2023.024521

    Abstract Due to the low content of adsorption-active groups in lignin, its application in the field of adsorption is limited. Herein, we first prepared cationic kraft lignin acrylate, from which a cationic lignin (CKLA) hydrogel was further prepared by cationic kraft lignin acrylate, acrylamide, and N, N’-methylenebisacrylamide. The morphology, compression properties and swelling properties of CKLA hydrogels were investigated. The prepared CKLA hydrogel was applied as an adsorbent for Congo red. The effect of CKLA hydrogel dosages, initial concentration of Congo red, and pH on adsorption efficiency was investigated. The maximum Congo red removal efficiency was obtained at the initial concentration… More >

  • Open Access

    ARTICLE

    Investigation of the Interaction Mechanism between Lignin Structural Units and Enzyme

    Lijing Huang, Penghui Li, Kangjie Jiang, Wenjuan Wu*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1613-1626, 2023, DOI:10.32604/jrm.2022.023605

    Abstract The effect of lignin structural units on enzymatic hydrolysis of lignocellulosic biomass was investigated, especially the inhibitory role of lignin in non-productive adsorption with enzymes. Milled wood lignin (MWL) was isolated from different hardwoods of poplar, eucalyptus and acacia. The isolated lignin samples were characterized by elemental analysis, gel permeation chromatography, nitrobenzene oxidation and fourier infrared spectroscopy. The mechanism of lignin structural units on enzymatic hydrolysis of cellulose was studied by quartz crystal microbalance (QCM). The results showed that different structural units of lignin had different adsorption capacity for enzymes. The results of nitrobenzene oxidation indicated that the S/G ratio… More > Graphic Abstract

    Investigation of the Interaction Mechanism between Lignin Structural Units and Enzyme

  • Open Access

    ARTICLE

    Performance of a Solar-Biomass Adsorption Chiller

    Najeh Ghilen1,3,*, Mohammed El Ganaoui3, Slimane Gabsi1,2, Riad Benelmir3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 1015-1026, 2023, DOI:10.32604/fdmp.2022.022285

    Abstract A dynamic model is presented for a chiller working with a composite adsorbent (silica activated carbon/CaCl2)–water pair in a solar-biomass cooling installation. The main objective is determining a link between two possible evaporator configurations and the refrigerator’s performances. The two considered evaporators work at different pressure levels. The related time evolution profiles of temperature, pressure and water content are studied. Moreover, the effects of hot water inlet temperature and cooling water inlet temperature on the specific cooling capacity (SCP) and coefficient of performance (COP) are predicted by means of numerical simulations. The results show that an increase in the temperature… More >

  • Open Access

    ARTICLE

    Performance Analysis of a Solar Continuous Adsorption Refrigeration System

    Kolthoum Missaoui1,2,*, Nader Frikha2,3, Abdelhamid Kheiri1, Slimane Gabsi2,3, Mohammed El Ganaoui4

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 1067-1081, 2023, DOI:10.32604/fdmp.2022.021969

    Abstract A study is conducted on the performances of a solar powered continuous-adsorption refrigerator considering two particular days as references cases, namely, the summer solstice (June 21st) and the autumn equinox (September 21st). The cooling capacity, system performance coefficient and the daily rate of available cooling energy are assessed. The main goal is to compare the performances of a solar adsorption chiller equipped with a hot water tank (HWT) with an equivalent system relying on solar collectors with no heat storage module. The daily cooling rates for the solar refrigerator are found to be 102.4 kWh and 74.3 kWh, respectively, on… More >

  • Open Access

    ERRATUM

    Preparation of Kenaf Biochar and Its Adsorption Properties for Methylene Blue

    Xin Wan1,2,#, Zhigang Xia3,4,#, Xiaoli Yang1,2, Chengfeng Zhou2, Yuanming Zhang1,2, Haoxi Ben1,2, Guangting Han1,2, Wei Jiang1,2,*

    Journal of Renewable Materials, Vol.11, No.3, pp. 1531-1531, 2023, DOI:10.32604/jrm.2023.027109

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Study on Coconut Shell Activated Carbon Temperature Swing Adsorption of Benzene and Formaldehyde

    Zhiguang Yang1,*, Gaojun Yan1,2, Xueping Liu1, Zhengyuan Feng1, Xinfeng Zhu1, Yanli Mao1, Songtao Chen1, Zhisheng Yu2, Ruimei Fan3, Linlin Shan3,*

    Journal of Renewable Materials, Vol.10, No.12, pp. 3573-3585, 2022, DOI:10.32604/jrm.2022.022031

    Abstract Adsorption can be used to recover effectively the volatile organic gases (VOCs) in the exhaust gas from factories through using an appropriate adsorption bed. Due to form a physical or chemical bond, adsorption occurs between the porous solid medium and the liquid or gas multi-component fluid mixture. The regeneration capacity of the adsorbent is as important as the adsorption capacity and it determines the economics of the adsorption system. The regeneration of adsorbent can be realized through changing the pressure or temperature of the system. Here, activated carbon samples from coconut shell were prepared and characterized. Benzene or formaldehyde in… More > Graphic Abstract

    Study on Coconut Shell Activated Carbon Temperature Swing Adsorption of Benzene and Formaldehyde

  • Open Access

    ARTICLE

    Preparation of Kenaf Biochar and Its Adsorption Properties for Methylene Blue

    Xin Wan1,2,#, Zhigang Xia3,4,#, Xiaoli Yang1,2, Chengfeng Zhou2, Yuanming Zhang1,2, Haoxi Ben1,2, Guangting Han1,2, Wei Jiang1,2,*

    Journal of Renewable Materials, Vol.10, No.12, pp. 3391-3404, 2022, DOI:10.32604/jrm.2022.021102

    Abstract The toxic dyestuffs from printing and dyeing wastewater have caused serious damages to the ecological environment, thus exploring effective methods to remove them having become a key topic. Here, a series of biochar samples were synthesized form kenaf to adsorb methylene blue (MB), which was acted as the dye representative for the test of adsorption capacity due to the presence of abundant double bond and aromatic heterocyclic ring. By tuning the raw materials and pyrolysis temperature, a super adsorption capacity about 164.21 mg·g–1 was obtained over the biochar that pyrolyzed at 700°C with the kenaf fiber as raw material. Through… More >

  • Open Access

    ARTICLE

    Magnetic Wakame-Based Biochar/Ni Composites with Enhanced Adsorption Performance for Diesel

    Hua Jing1, Shiyao Lu1, Lili Ji1,*, Shijie Li1, Baikang Zhu2, Jian Guo3, Jiaxing Sun1, Lu Cai4, Yaning Wang1

    Journal of Renewable Materials, Vol.10, No.12, pp. 3147-3165, 2022, DOI:10.32604/jrm.2022.020215

    Abstract In this study, the magnetic wakame biochar/Ni composites were prepared with three activating reagents of H3PO4, ZnCl2 and KOH by one-step pyrolysis activation, characterized by BET, SEM, TEM, FI-IR, XRD, Raman, and elemental analyzer, and their adsorption performance for diesel were also analyzed. The results showed that wakame biochar/Ni composites had larger specific surface area, abundant porous structure, and various reactive groups, rendering its enhancement of adsorption efficiency. The adsorption experiments indicated that the maximum adsorption capacities for diesel using WBPA 0.5, WBHZ 0.5 and WBPH 0.5 were 4.11, 8.83, and 13.47 g/g, respectively. The Langmuir model was more suitable… More >

  • Open Access

    ARTICLE

    An Analysis of the Formation Mechanisms of Abrasive Particles and Their Effects on Cutting Efficiency

    Wei Zhang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1153-1167, 2022, DOI:10.32604/fdmp.2022.019719

    Abstract Magnetic induction-free abrasive wire sawing (MIFAWS) is a method that combines magnetic fields with traditional free abrasive wire sawing technologies. Magnetic abrasive particles (MAPs) are attracted on a magnetized wire, thus leading to an increase in their number into the cutting zone. The number of instantaneous-effective abrasive particles (IEAPs) adsorbed on the wire surface has a great influence on the cutting efficiency of the saw wire. In this study, a mathematic model of the movement of the MAP is presented, and the factors influencing the IEAPs number, including slurry-supply speed and slurry dynamic viscosity, are investigated both by means of… More >

  • Open Access

    ARTICLE

    Development of Magnetite/Graphene Oxide Hydrogels from Agricultural Wastes for Water Treatment

    Hebat-Allah S. Tohamy, Mohamed El-Sakhawy, Samir Kamel*

    Journal of Renewable Materials, Vol.10, No.7, pp. 1889-1909, 2022, DOI: 10.32604/jrm.2022.019211

    Abstract A novel magnetic hydrogel loaded with graphene oxide (GO) was developed in this study. Firstly, GO was prepared from bagasse through a single step via oxidation in the presence of ferrocene under muffled atmospheric conditions, followed by the loading of different amounts of magnetite onto GO via co-precipitation reaction of iron onto GO sheets. Finally, the 2-acrylamido-2-methyl-1-propane sulfonic acid was grafted onto carboxymethyl cellulose in the presence of magnetite GO and N, N′-methylenebisacrylamide as crosslinker yielded hydrogel. The structure, morphological, and thermal behavior of the prepared hydrogels were investigated. In addition, the adsorption performance of Ni(II) ions from aqueous media… More > Graphic Abstract

    Development of Magnetite/Graphene Oxide Hydrogels from Agricultural Wastes for Water Treatment

Displaying 21-30 on page 3 of 58. Per Page