Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    A Numerical Investigation on the Influence of the Circular Ring on the Aerodynamic Noise Generated by a Cooling Fan

    Jun Feng1,2, Tao Bian1,2,5, Qianpeng Han2, Bing Wang1,3,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 1-14, 2023, DOI:10.32604/fdmp.2023.018275

    Abstract The influence of the width of the circular ring of a car cooling fan on the aerodynamic noise is investigated numerically through the determination of the overall sound pressure level (OASPL). The results demonstrate that when the circular rings cover near 2/3 of the width of the blade tips of the rotor in the axis direction, the rotor has the lowest OASPL and the related total pressure efficiency and flow mass rate are better than the corresponding values obtained for a reference rotor without a circular ring. With increasing the width of the circular ring in the axis direction, the… More > Graphic Abstract

    A Numerical Investigation on the Influence of the Circular Ring on the Aerodynamic Noise Generated by a Cooling Fan

  • Open Access

    ARTICLE

    A Fast Approach for Predicting Aerodynamic Noise Sources of High-Speed Train Running in Tunnel

    Deng Qin1, Tian Li1,*, Honglin Wang2, Jizhong Yang3, Yao Jiang3, Jiye Zhang1, Haiquan Bi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1371-1386, 2022, DOI:10.32604/cmes.2022.018480

    Abstract The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue. Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are the key to alleviating aerodynamic noise issues. In this paper, two typical numerical methods are used to calculate the aerodynamic noise of high-speed trains. These are the static method combined with non-reflective boundary conditions and the dynamic mesh method combined with adaptive mesh. The fluctuating pressure, flow field and aerodynamic noise source are numerically simulated using the above methods. The results show that the fluctuating pressure, flow field structure… More >

  • Open Access

    ARTICLE

    Numerical Investigation on the Aerodynamic Noise Generated by a Simplified Double-Strip Pantograph

    Jiawei Shi1, Shuai Ge1, Xiaozhen Sheng2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 463-480, 2022, DOI:10.32604/fdmp.2022.017508

    Abstract In order to understand the mechanism by which a pantograph can generate aerodynamic noise and grasp its far-field characteristics, a simplified double-strip pantograph is analyzed numerically. Firstly, the unsteady flow field around the pantograph is simulated in the frame of a large eddy simulation (LES) technique. Then the location of the main noise source is determined using surface fluctuating pressure data and the vortex structures in the pantograph flow field are analyzed by means of the Q-criterion. Based on this, the relationship between the wake vortex and the intensity of the aerodynamic sound source on the pantograph surface is discussed.… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Axial Inflow Characteristics and Aerodynamic Noise in a Large-Scale Adjustable-Blade Fan

    Lin Wang1, Chunguo An2, Nini Wang2, Yaming Ping1, Kun Wang1, Ming Gao1,*, Suoying He1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 585-600, 2020, DOI:10.32604/fdmp.2020.09611

    Abstract Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from −12° to 12°. In such a range the maximum static (gauge) pressure at the inlet changes from −2280 Pa to 382 Pa, and the minimum static pressure decreases from −3389 Pa to −8000 Pa. As for the axial intermediate flow surface, one low pressure zone is located at the junction of the suction surface and the hub, another is located at the suction surface close to the casing position. At the outlet boundary,… More >

  • Open Access

    ARTICLE

    A Study on the Reduction of the Aerodynamic Drag and Noise Generated By the Roof Air Conditioner of High-Speed Trains

    Jiali Liu1, Mengge Yu2, *, Dawei Chen1, Zhigang Yang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.1, pp. 21-30, 2020, DOI:10.32604/fdmp.2020.07658

    Abstract In order to investigate how the aerodynamic drag and noise produced by the roof air conditioner of a high-speed train can be reduced, the related unsteady flow in the near-field was computed using the method of large eddy simulation. In this way, the aerodynamic source for noise generation has initially been determined. Then, the far-field aerodynamic noise has been computed in the framework of the Lighthill’s acoustics analogy theory. The propulsion height and flow-guide angle of the roof air conditioner were set as the design variables. According to the computational results, a lower propulsion height or flow-guide angle is beneficial… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Investigation on the External Aerodynamic Noise of High-Speed Train

    Shijie Jiang*, Song Yang, Bohong Zhang, Bangchun Wen

    Sound & Vibration, Vol.53, No.4, pp. 129-138, 2019, DOI:10.32604/sv.2019.04048

    Abstract Aerodynamic noise is the dominant noise source of the high-speed train. It not only seriously affects the passenger comfort and people’s normal life along the railway line, but also may cause fatigue damage to the surrounding equipment and buildings. This manuscript carried out the simulation and experimental study on the external aerodynamic noise of high-speed train, in order to increase the understanding of the noise and hence to be better able to control it. The on-line tests were performed to verify that it is reasonable to simplify the high-speed train model. The turbulent air flow model was then developed, and… More >

  • Open Access

    ARTICLE

    Computation of Aerodynamic Noise Radiated From Open Propeller Using Boundary Element Method

    Jun Huang1,2, Chaopu Zhang1, Song Xiang2, Liu Yang1, Mingxu Yi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.5, pp. 315-330, 2015, DOI:10.3970/cmes.2015.108.315

    Abstract In order to accurately predict the aerodynamic noise of the propeller, a hybrid method combining Computational Fluid Dynamics (CFD) method with Boundary Element Method (BEM) is developed in this paper. The calculation includes two steps: firstly, the unsteady viscous flow around the propeller is calculated using the CFD method to acquire the noise source information; secondly, the radiated sound pressure is calculated using BEM method in the frequency domain. In comparison with the experimental results from wind tunnel, the calculated results of aerodynamic performance are rather desirable. The simulation and experimental results of aerodynamic noise are well fitted. The directivity… More >

Displaying 1-10 on page 1 of 7. Per Page  

Share Link