Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (125)
  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear Problems with Large Deformations and Rotations

    Z. D. Han1, A. M. Rajendran2, S.N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.1, pp. 1-12, 2005, DOI:10.3970/cmes.2005.010.001

    Abstract A nonlinear formulation of the Meshless Local Petrov-Galerkin (MLPG) finite-volume mixed method is developed for the large deformation analysis of static and dynamic problems. In the present MLPG large deformation formulation, the velocity gradients are interpolated independently, to avoid the time consuming differentiations of the shape functions at all integration points. The nodal values of velocity gradients are expressed in terms of the independently interpolated nodal values of displacements (or velocities), by enforcing the compatibility conditions directly at the nodal points. For validating the present large deformation MLPG formulation, two example problems are considered: 1)… More >

  • Open Access

    ARTICLE

    Coalescence and Non-coalescence Phenomena in Multi-material Problems and Dispersed Multiphase Flows: Part 2, A Critical Review of CFD Approaches

    Marcello Lappa1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.3, pp. 213-234, 2005, DOI:10.3970/fdmp.2005.001.213

    Abstract The physical properties of many emulsions and metal alloys strongly depend on the multiphase morphology which is controlled to a great degree by particle-particle interaction during the related processing. In the present article significant effort is devoted to illustrate the philosophy of modeling for these phenomena and some insights into the physics. Within such a context working numerical techniques that have enjoyed a widespread use over recent years are presented and/or reviewed. Finally a focused and critical comparison of these possible approaches is reported illustrating advantages and disadvantages, strengths and weaknesses, past history and future More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin (MLPG) approaches for solving 3D Problems in elasto-statics

    Z. D. Han1, S. N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.2, pp. 169-188, 2004, DOI:10.3970/cmes.2004.006.169

    Abstract Three different truly Meshless Local Petrov-Galerkin (MLPG) methods are developed for solving 3D elasto-static problems. Using the general MLPG concept, these methods are derived through the local weak forms of the equilibrium equations, by using different test functions, namely, the Heaviside function, the Dirac delta function, and the fundamental solutions. The one with the use of the fundamental solutions is based on the local unsymmetric weak form (LUSWF), which is equivalent to the local boundary integral equations (LBIE) of the elasto-statics. Simple formulations are derived for the LBIEs in which only weakly-singular integrals are included More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving the Weakly-Singular Traction & Displacement Boundary Integral Equations

    S. N. Atluri1, Z. D. Han1, S. Shen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.5, pp. 507-518, 2003, DOI:10.3970/cmes.2003.004.507

    Abstract The general Meshless Local Petrov-Galerkin (MLPG) type weak-forms of the displacement & traction boundary integral equations are presented, for solids undergoing small deformations. These MLPG weak forms provide the most general basis for the numerical solution of the non-hyper-singular displacement and traction BIEs [given in Han, and Atluri (2003)], which are simply derived by using the gradients of the displacements of the fundamental solutions [Okada, Rajiyah, and Atluri (1989a,b)]. By employing the various types of test functions, in the MLPG-type weak-forms of the non-hyper-singular dBIE and tBIE over the local sub-boundary surfaces, several types of… More >

  • Open Access

    ARTICLE

    On Simple Formulations of Weakly-Singular Traction & Displacement BIE, and Their Solutions through Petrov-Galerkin Approaches

    Z. D. Han1, S. N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.1, pp. 5-20, 2003, DOI:10.3970/cmes.2003.004.005

    Abstract Using the directly derived non-hyper singular integral equations for displacement gradients [as in Okada, Rajiyah, and Atluri (1989a)], simple and straight-forward derivations of weakly singular traction BIE's for solids undergoing small deformations are presented. A large number of ``intrinsic properties'' of the fundamental solutions in elasticity are developed, and are used in rendering the tBIE and dBIE to be only weakly-singular, in a very simple manner. The solutions of the weakly singular tBIE and dBIE through either global Petrov-Galerkin type ``boundary element methods'', or, alternatively, through the meshless local Petrov-Galerkin (MLPG) methods, are discussed. As More >

Displaying 121-130 on page 13 of 125. Per Page