Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (51)
  • Open Access

    ARTICLE

    Numerical Computational Heuristic Through Morlet Wavelet Neural Network for Solving the Dynamics of Nonlinear SITR COVID-19

    Zulqurnain Sabir1, Abeer S. Alnahdi2,*, Mdi Begum Jeelani2, Mohamed A. Abdelkawy2,3,*, Muhammad Asif Zahoor Raja4, Dumitru Baleanu5,6, Muhammad Mubashar Hussain7

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 763-785, 2022, DOI:10.32604/cmes.2022.018496 - 14 March 2022

    Abstract The present investigations are associated with designing Morlet wavelet neural network (MWNN) for solving a class of susceptible, infected, treatment and recovered (SITR) fractal systems of COVID-19 propagation and control. The structure of an error function is accessible using the SITR differential form and its initial conditions. The optimization is performed using the MWNN together with the global as well as local search heuristics of genetic algorithm (GA) and active-set algorithm (ASA), i.e., MWNN-GA-ASA. The detail of each class of the SITR nonlinear COVID-19 system is also discussed. The obtained outcomes of the SITR system are More >

  • Open Access

    ARTICLE

    A Feature Selection Strategy to Optimize Retinal Vasculature Segmentation

    José Escorcia-Gutierrez1,4,*, Jordina Torrents-Barrena4, Margarita Gamarra2, Natasha Madera1, Pedro Romero-Aroca3, Aida Valls4, Domenec Puig4

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2971-2989, 2022, DOI:10.32604/cmc.2022.020074 - 27 September 2021

    Abstract Diabetic retinopathy (DR) is a complication of diabetes mellitus that appears in the retina. Clinitians use retina images to detect DR pathological signs related to the occlusion of tiny blood vessels. Such occlusion brings a degenerative cycle between the breaking off and the new generation of thinner and weaker blood vessels. This research aims to develop a suitable retinal vasculature segmentation method for improving retinal screening procedures by means of computer-aided diagnosis systems. The blood vessel segmentation methodology relies on an effective feature selection based on Sequential Forward Selection, using the error rate of a… More >

  • Open Access

    ARTICLE

    H-infinity Controller Based Disturbance Rejection in Continuous Stirred-Tank Reactor

    Sikander Hans1, Smarajit Ghosh2,*

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 29-41, 2022, DOI:10.32604/iasc.2022.019525 - 03 September 2021

    Abstract This paper offers an H-infinity (H∞) controller-based disturbance rejection along with the utilization of the water wave optimization (WWO) algorithm. H∞ controller is used to synthesize the guaranteed performance of certain applications as well as it provides maximum gain at any situation. The proposed work focuses on the conflicts of continuous stirred-tank reactor (CSTR) such as variation in temperature and product concentration. The elimination of these issues is performed with the help of the WWO algorithm along with the controller operation. In general, the algorithmic framework of WWO algorithm is simple, and easy to implement More >

  • Open Access

    ARTICLE

    Numerical Solutions of a Novel Designed Prevention Class in the HIV Nonlinear Model

    Zulqurnain Sabir1, Muhammad Umar1, Muhammad Asif Zahoor Raja2,*, Dumitru Baleanu3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 227-251, 2021, DOI:10.32604/cmes.2021.016611 - 24 August 2021

    Abstract The presented research aims to design a new prevention class (P) in the HIV nonlinear system, i.e., the HIPV model. Then numerical treatment of the newly formulated HIPV model is portrayed handled by using the strength of stochastic procedure based numerical computing schemes exploiting the artificial neural networks (ANNs) modeling legacy together with the optimization competence of the hybrid of global and local search schemes via genetic algorithms (GAs) and active-set approach (ASA), i.e., GA-ASA. The optimization performances through GA-ASA are accessed by presenting an error-based fitness function designed for all the classes of the More >

  • Open Access

    ARTICLE

    Intelligent Model Of Ecosystem For Smart Cities Using Artificial Neural Networks

    Tooba Batool1, Sagheer Abbas1, Yousef Alhwaiti2, Muhammad Saleem1, Munir Ahmad1, Muhammad Asif1,*, Nouh Sabri Elmitwally2,3

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 513-525, 2021, DOI:10.32604/iasc.2021.018770 - 11 August 2021

    Abstract A Smart City understands the infrastructure, facilities, and schemes open to its citizens. According to the UN report, at the end of 2050, more than half of the rural population will be moved to urban areas. With such an increase, urban areas will face new health, education, Transport, and ecological issues. To overcome such kinds of issues, the world is moving towards smart cities. Cities cannot be smart without using Cloud computing platforms, the Internet of Things (IoT). The world has seen such incredible and brilliant ideas for rural areas and smart cities. While considering… More >

  • Open Access

    ARTICLE

    Intrusion Detection Using a New Hybrid Feature Selection Model

    Adel Hamdan Mohammad*

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 65-80, 2021, DOI:10.32604/iasc.2021.016140 - 26 July 2021

    Abstract Intrusion detection is an important topic that aims at protecting computer systems. Besides, feature selection is crucial for increasing the performance of intrusion detection. This paper employs a new hybrid feature selection model for intrusion detection. The implemented model uses Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO) algorithms in a new manner. In addition, this study introduces two new models called (PSO-GWO-NB) and (PSO-GWO-ANN) for feature selection and intrusion detection. PSO and GWO show emergent results in feature selection for several purposes and applications. This paper uses PSO and GWO to select features… More >

  • Open Access

    ARTICLE

    Deep Learning and Entity Embedding-Based Intrusion Detection Model for Wireless Sensor Networks

    Bandar Almaslukh*

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 1343-1360, 2021, DOI:10.32604/cmc.2021.017914 - 04 June 2021

    Abstract Wireless sensor networks (WSNs) are considered promising for applications such as military surveillance and healthcare. The security of these networks must be ensured in order to have reliable applications. Securing such networks requires more attention, as they typically implement no dedicated security appliance. In addition, the sensors have limited computing resources and power and storage, which makes WSNs vulnerable to various attacks, especially denial of service (DoS). The main types of DoS attacks against WSNs are blackhole, grayhole, flooding, and scheduling. There are two primary techniques to build an intrusion detection system (IDS): signature-based and… More >

  • Open Access

    ARTICLE

    Driving Pattern Profiling and Classification Using Deep Learning

    Meenakshi Malik1, Rainu Nandal1, Surjeet Dalal2, Vivek Jalglan3, Dac-Nhuong Le4,5,*

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 887-906, 2021, DOI:10.32604/iasc.2021.016272 - 20 April 2021

    Abstract The last several decades have witnessed an exponential growth in the means of transport globally, shrinking geographical distances and connecting the world. The automotive industry has grown by leaps and bounds, with millions of new vehicles being sold annually, be it for personal commuting or for public or commodity transport. However, millions of motor vehicles on the roads also mean an equal number of drivers with varying levels of skill and adherence to safety regulations. Very little has been done in the way of exploring and profiling driving patterns and vehicular usage using real world… More >

  • Open Access

    ARTICLE

    A Novel Power Curve Prediction Method for Horizontal-Axis Wind Turbines Using Artificial Neural Networks

    Vin Cent Tai1,*, Yong Chai Tan1, Nor Faiza Abd Rahman1, Chee Ming Chia2, Mirzhakyp Zhakiya2, Lip Huat Saw3

    Energy Engineering, Vol.118, No.3, pp. 507-516, 2021, DOI:10.32604/EE.2021.014868 - 22 March 2021

    Abstract Accurate prediction of wind turbine power curve is essential for wind farm planning as it influences the expected power production. Existing methods require detailed wind turbine geometry for performance evaluation, which most of the time unattainable and impractical in early stage of wind farm planning. While significant amount of work has been done on fitting of wind turbine power curve using parametric and non-parametric models, little to no attention has been paid for power curve modelling that relates the wind turbine design information. This paper presents a novel method that employs artificial neural network to More >

  • Open Access

    ARTICLE

    Long-Term Electricity Demand Forecasting for Malaysia Using Artificial Neural Networks in the Presence of Input and Model Uncertainties

    Vin Cent Tai1,*, Yong Chai Tan1, Nor Faiza Abd Rahman1, Hui Xin Che2, Chee Ming Chia2, Lip Huat Saw3, Mohd Fozi Ali4

    Energy Engineering, Vol.118, No.3, pp. 715-725, 2021, DOI:10.32604/EE.2021.014865 - 22 March 2021

    Abstract Electricity demand is also known as load in electric power system. This article presents a Long-Term Load Forecasting (LTLF) approach for Malaysia. An Artificial Neural Network (ANN) of 5-layer Multi-Layered Perceptron (MLP) structure has been designed and tested for this purpose. Uncertainties of input variables and ANN model were introduced to obtain the prediction for years 2022 to 2030. Pearson correlation was used to examine the input variables for model construction. The analysis indicates that Primary Energy Supply (PES), population, Gross Domestic Product (GDP) and temperature are strongly correlated. The forecast results by the proposed… More >

Displaying 31-40 on page 4 of 51. Per Page