Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (171)
  • Open Access

    ARTICLE

    Straw Segmentation Algorithm Based on Modified UNet in Complex Farmland Environment

    Yuanyuan Liu1,2, Shuo Zhang1, Haiye Yu3, Yueyong Wang4,*, Yuehan Feng1, Jiahui Sun1, Xiaokang Zhou1

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 247-262, 2021, DOI:10.32604/cmc.2020.012328 - 30 October 2020

    Abstract Intelligent straw coverage detection plays an important role in agricultural production and the ecological environment. Traditional pattern recognition has some problems, such as low precision and a long processing time, when segmenting complex farmland, which cannot meet the conditions of embedded equipment deployment. Based on these problems, we proposed a novel deep learning model with high accuracy, small model size and fast running speed named Residual Unet with Attention mechanism using depthwise convolution (RADw–UNet). This algorithm is based on the UNet symmetric codec model. All the feature extraction modules of the network adopt the residual… More >

  • Open Access

    ARTICLE

    ACLSTM: A Novel Method for CQA Answer Quality Prediction Based on Question-Answer Joint Learning

    Weifeng Ma*, Jiao Lou, Caoting Ji, Laibin Ma

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 179-193, 2021, DOI:10.32604/cmc.2020.011969 - 30 October 2020

    Abstract Given the limitations of the community question answering (CQA) answer quality prediction method in measuring the semantic information of the answer text, this paper proposes an answer quality prediction model based on the question-answer joint learning (ACLSTM). The attention mechanism is used to obtain the dependency relationship between the Question-and-Answer (Q&A) pairs. Convolutional Neural Network (CNN) and Long Short-term Memory Network (LSTM) are used to extract semantic features of Q&A pairs and calculate their matching degree. Besides, answer semantic representation is combined with other effective extended features as the input representation of the fully connected More >

  • Open Access

    ARTICLE

    A Multi-View Gait Recognition Method Using Deep Convolutional Neural Network and Channel Attention Mechanism

    Jiabin Wang*, Kai Peng

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 345-363, 2020, DOI:10.32604/cmes.2020.011046 - 18 September 2020

    Abstract In many existing multi-view gait recognition methods based on images or video sequences, gait sequences are usually used to superimpose and synthesize images and construct energy-like template. However, information may be lost during the process of compositing image and capture EMG signals. Errors and the recognition accuracy may be introduced and affected respectively by some factors such as period detection. To better solve the problems, a multi-view gait recognition method using deep convolutional neural network and channel attention mechanism is proposed. Firstly, the sliding time window method is used to capture EMG signals. Then, the… More >

  • Open Access

    ARTICLE

    An Attention-Based Friend Recommendation Model in Social Network

    Chongchao Cai1, 2, Huahu Xu1, *, Jie Wan2, Baiqing Zhou2, Xiongwei Xie3

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2475-2488, 2020, DOI:10.32604/cmc.2020.011693 - 16 September 2020

    Abstract In social networks, user attention affects the user’s decision-making, resulting in a performance alteration of the recommendation systems. Existing systems make recommendations mainly according to users’ preferences with a particular focus on items. However, the significance of users’ attention and the difference in the influence of different users and items are often ignored. Thus, this paper proposes an attention-based multi-layer friend recommendation model to mitigate information overload in social networks. We first constructed the basic user and item matrix via convolutional neural networks (CNN). Then, we obtained user preferences by using the relationships between users More >

  • Open Access

    ARTICLE

    Review of Text Classification Methods on Deep Learning

    Hongping Wu1, Yuling Liu1, *, Jingwen Wang2

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1309-1321, 2020, DOI:10.32604/cmc.2020.010172 - 30 April 2020

    Abstract Text classification has always been an increasingly crucial topic in natural language processing. Traditional text classification methods based on machine learning have many disadvantages such as dimension explosion, data sparsity, limited generalization ability and so on. Based on deep learning text classification, this paper presents an extensive study on the text classification models including Convolutional Neural Network-Based (CNN-Based), Recurrent Neural Network-Based (RNN-based), Attention Mechanisms-Based and so on. Many studies have proved that text classification methods based on deep learning outperform the traditional methods when processing large-scale and complex datasets. The main reasons are text classification More >

  • Open Access

    ARTICLE

    A Novel Bidirectional LSTM and Attention Mechanism Based Neural Network for Answer Selection in Community Question Answering

    Bo Zhang1, Haowen Wang1, #, Longquan Jiang1, Shuhan Yuan2, Meizi Li1, *

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1273-1288, 2020, DOI:10.32604/cmc.2020.07269

    Abstract Deep learning models have been shown to have great advantages in answer selection tasks. The existing models, which employ encoder-decoder recurrent neural network (RNN), have been demonstrated to be effective. However, the traditional RNN-based models still suffer from limitations such as 1) high-dimensional data representation in natural language processing and 2) biased attentive weights for subsequent words in traditional time series models. In this study, a new answer selection model is proposed based on the Bidirectional Long Short-Term Memory (Bi-LSTM) and attention mechanism. The proposed model is able to generate the more effective question-answer pair More >

  • Open Access

    ARTICLE

    SSD Real-Time Illegal Parking Detection Based on Contextual Information Transmission

    Huanrong Tang1, Aoming Peng1, Dongming Zhang2, Tianming Liu3, Jianquan Ouyang1, *

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 293-307, 2020, DOI:10.32604/cmc.2020.06427

    Abstract With the improvement of the national economic level, the number of vehicles is still increasing year by year. According to the statistics of National Bureau of Statics, the number is approximately up to 327 million in China by the end of 2018, which makes urban traffic pressure continues to rise so that the negative impact of urban traffic order is growing. Illegal parking-the common problem in the field of transportation security is urgent to be solved and traditional methods to address it are mainly based on ground loop and manual supervision, which may miss detection… More >

  • Open Access

    ARTICLE

    Neural Dialogue Model with Retrieval Attention for Personalized Response Generation

    Cong Xu1, 2, Zhenqi Sun2, 3, Qi Jia2, 3, Dezheng Zhang2, 3, Yonghong Xie2, 3,*, Alan Yang4

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 113-122, 2020, DOI:10.32604/cmc.2020.05239

    Abstract With the success of new speech-based human-computer interfaces, there is a great need for effective and friendly dialogue agents that can communicate with people naturally and continuously. However, the lack of personality and consistency is one of critical problems in neural dialogue systems. In this paper, we aim to generate consistent response with fixed profile and background information for building a realistic dialogue system. Based on the encoder-decoder model, we propose a retrieval mechanism to deliver natural and fluent response with proper information from a profile database. Moreover, in order to improve the efficiency of More >

  • Open Access

    ARTICLE

    Keyphrase Generation Based on Self-Attention Mechanism

    Kehua Yang1,*, Yaodong Wang1, Wei Zhang1, Jiqing Yao2, Yuquan Le1

    CMC-Computers, Materials & Continua, Vol.61, No.2, pp. 569-581, 2019, DOI:10.32604/cmc.2019.05952

    Abstract Keyphrase greatly provides summarized and valuable information. This information can help us not only understand text semantics, but also organize and retrieve text content effectively. The task of automatically generating it has received considerable attention in recent decades. From the previous studies, we can see many workable solutions for obtaining keyphrases. One method is to divide the content to be summarized into multiple blocks of text, then we rank and select the most important content. The disadvantage of this method is that it cannot identify keyphrase that does not include in the text, let alone… More >

  • Open Access

    ARTICLE

    Dependency-Based Local Attention Approach to Neural Machine Translation

    Jing Qiu1, Yan Liu2, Yuhan Chai2, Yaqi Si2, Shen Su1, ∗, Le Wang1, ∗, Yue Wu3

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 547-562, 2019, DOI:10.32604/cmc.2019.05892

    Abstract Recently dependency information has been used in different ways to improve neural machine translation. For example, add dependency labels to the hidden states of source words. Or the contiguous information of a source word would be found according to the dependency tree and then be learned independently and be added into Neural Machine Translation (NMT) model as a unit in various ways. However, these works are all limited to the use of dependency information to enrich the hidden states of source words. Since many works in Statistical Machine Translation (SMT) and NMT have proven the… More >

Displaying 161-170 on page 17 of 171. Per Page