Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (206)
  • Open Access

    ARTICLE

    Chinese Q&A Community Medical Entity Recognition with Character-Level Features and Self-Attention Mechanism

    Pu Han1,2, Mingtao Zhang1, Jin Shi3, Jinming Yang4, Xiaoyan Li5,*

    Intelligent Automation & Soft Computing, Vol.29, No.1, pp. 55-72, 2021, DOI:10.32604/iasc.2021.017021 - 12 May 2021

    Abstract With the rapid development of Internet, the medical Q&A community has become an important channel for people to obtain and share medical and health knowledge. Online medical entity recognition (OMER), as the foundation of medical and health information extraction, has attracted extensive attention of researchers in recent years. In order to further improve the research progress of Chinese OMER, LSTM-Att-Med model is proposed in this paper to capture more external semantic features and important information. First, Word2vec is used to generate the character-level vectors with semantic features on the basis of the unlabeled corpus in the… More >

  • Open Access

    ARTICLE

    Joint Event Extraction Based on Global Event-Type Guidance and Attention Enhancement

    Daojian Zeng1, Jian Tian2, Ruoyao Peng1, Jianhua Dai1,*, Hui Gao3, Peng Peng4

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 4161-4173, 2021, DOI:10.32604/cmc.2021.017028 - 06 May 2021

    Abstract Event extraction is one of the most challenging tasks in information extraction. It is a common phenomenon where multiple events exist in the same sentence. However, extracting multiple events is more difficult than extracting a single event. Existing event extraction methods based on sequence models ignore the interrelated information between events because the sequence is too long. In addition, the current argument extraction relies on the results of syntactic dependency analysis, which is complicated and prone to error transmission. In order to solve the above problems, a joint event extraction method based on global event-type… More >

  • Open Access

    ARTICLE

    Image-to-Image Style Transfer Based on the Ghost Module

    Yan Jiang1, Xinrui Jia1, Liguo Zhang1,2,*, Ye Yuan1, Lei Chen3, Guisheng Yin1

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 4051-4067, 2021, DOI:10.32604/cmc.2021.016481 - 06 May 2021

    Abstract The technology for image-to-image style transfer (a prevalent image processing task) has developed rapidly. The purpose of style transfer is to extract a texture from the source image domain and transfer it to the target image domain using a deep neural network. However, the existing methods typically have a large computational cost. To achieve efficient style transfer, we introduce a novel Ghost module into the GANILLA architecture to produce more feature maps from cheap operations. Then we utilize an attention mechanism to transform images with various styles. We optimize the original generative adversarial network (GAN) More >

  • Open Access

    ARTICLE

    YOLOv3 Attention Face Detector with High Accuracy and Efficiency

    Qiyuan Liu, Shuhua Lu*, Lingqiang Lan

    Computer Systems Science and Engineering, Vol.37, No.2, pp. 283-295, 2021, DOI:10.32604/csse.2021.014086 - 01 March 2021

    Abstract In recent years, face detection has attracted much attention and achieved great progress due to its extensively practical applications in the field of face based computer vision. However, the tradeoff between accuracy and efficiency of the face detectors still needs to be further studied. In this paper, using Darknet-53 as backbone, we propose an improved YOLOv3-attention model by introducing attention mechanism and data augmentation to obtain the robust face detector with high accuracy and efficiency. The attention mechanism is introduced to enhance much higher discrimination of the deep features, and the trick of data augmentation… More >

  • Open Access

    ARTICLE

    Adversarial Active Learning for Named Entity Recognition in Cybersecurity

    Tao Li1, Yongjin Hu1,*, Ankang Ju1, Zhuoran Hu2

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 407-420, 2021, DOI:10.32604/cmc.2020.012023 - 30 October 2020

    Abstract Owing to the continuous barrage of cyber threats, there is a massive amount of cyber threat intelligence. However, a great deal of cyber threat intelligence come from textual sources. For analysis of cyber threat intelligence, many security analysts rely on cumbersome and time-consuming manual efforts. Cybersecurity knowledge graph plays a significant role in automatics analysis of cyber threat intelligence. As the foundation for constructing cybersecurity knowledge graph, named entity recognition (NER) is required for identifying critical threat-related elements from textual cyber threat intelligence. Recently, deep neural network-based models have attained very good results in NER.… More >

  • Open Access

    ARTICLE

    Straw Segmentation Algorithm Based on Modified UNet in Complex Farmland Environment

    Yuanyuan Liu1,2, Shuo Zhang1, Haiye Yu3, Yueyong Wang4,*, Yuehan Feng1, Jiahui Sun1, Xiaokang Zhou1

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 247-262, 2021, DOI:10.32604/cmc.2020.012328 - 30 October 2020

    Abstract Intelligent straw coverage detection plays an important role in agricultural production and the ecological environment. Traditional pattern recognition has some problems, such as low precision and a long processing time, when segmenting complex farmland, which cannot meet the conditions of embedded equipment deployment. Based on these problems, we proposed a novel deep learning model with high accuracy, small model size and fast running speed named Residual Unet with Attention mechanism using depthwise convolution (RADw–UNet). This algorithm is based on the UNet symmetric codec model. All the feature extraction modules of the network adopt the residual… More >

  • Open Access

    ARTICLE

    ACLSTM: A Novel Method for CQA Answer Quality Prediction Based on Question-Answer Joint Learning

    Weifeng Ma*, Jiao Lou, Caoting Ji, Laibin Ma

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 179-193, 2021, DOI:10.32604/cmc.2020.011969 - 30 October 2020

    Abstract Given the limitations of the community question answering (CQA) answer quality prediction method in measuring the semantic information of the answer text, this paper proposes an answer quality prediction model based on the question-answer joint learning (ACLSTM). The attention mechanism is used to obtain the dependency relationship between the Question-and-Answer (Q&A) pairs. Convolutional Neural Network (CNN) and Long Short-term Memory Network (LSTM) are used to extract semantic features of Q&A pairs and calculate their matching degree. Besides, answer semantic representation is combined with other effective extended features as the input representation of the fully connected More >

  • Open Access

    ARTICLE

    A Multi-View Gait Recognition Method Using Deep Convolutional Neural Network and Channel Attention Mechanism

    Jiabin Wang*, Kai Peng

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 345-363, 2020, DOI:10.32604/cmes.2020.011046 - 18 September 2020

    Abstract In many existing multi-view gait recognition methods based on images or video sequences, gait sequences are usually used to superimpose and synthesize images and construct energy-like template. However, information may be lost during the process of compositing image and capture EMG signals. Errors and the recognition accuracy may be introduced and affected respectively by some factors such as period detection. To better solve the problems, a multi-view gait recognition method using deep convolutional neural network and channel attention mechanism is proposed. Firstly, the sliding time window method is used to capture EMG signals. Then, the… More >

  • Open Access

    ARTICLE

    An Attention-Based Friend Recommendation Model in Social Network

    Chongchao Cai1, 2, Huahu Xu1, *, Jie Wan2, Baiqing Zhou2, Xiongwei Xie3

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2475-2488, 2020, DOI:10.32604/cmc.2020.011693 - 16 September 2020

    Abstract In social networks, user attention affects the user’s decision-making, resulting in a performance alteration of the recommendation systems. Existing systems make recommendations mainly according to users’ preferences with a particular focus on items. However, the significance of users’ attention and the difference in the influence of different users and items are often ignored. Thus, this paper proposes an attention-based multi-layer friend recommendation model to mitigate information overload in social networks. We first constructed the basic user and item matrix via convolutional neural networks (CNN). Then, we obtained user preferences by using the relationships between users More >

  • Open Access

    ARTICLE

    Review of Text Classification Methods on Deep Learning

    Hongping Wu1, Yuling Liu1, *, Jingwen Wang2

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1309-1321, 2020, DOI:10.32604/cmc.2020.010172 - 30 April 2020

    Abstract Text classification has always been an increasingly crucial topic in natural language processing. Traditional text classification methods based on machine learning have many disadvantages such as dimension explosion, data sparsity, limited generalization ability and so on. Based on deep learning text classification, this paper presents an extensive study on the text classification models including Convolutional Neural Network-Based (CNN-Based), Recurrent Neural Network-Based (RNN-based), Attention Mechanisms-Based and so on. Many studies have proved that text classification methods based on deep learning outperform the traditional methods when processing large-scale and complex datasets. The main reasons are text classification More >

Displaying 191-200 on page 20 of 206. Per Page