Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (88)
  • Open Access

    ARTICLE

    Defect Detection in Printed Circuit Boards with Pre-Trained Feature Extraction Methodology with Convolution Neural Networks

    Mohammed A. Alghassab*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 637-652, 2022, DOI:10.32604/cmc.2022.019527 - 07 September 2021

    Abstract Printed Circuit Boards (PCBs) are very important for proper functioning of any electronic device. PCBs are installed in almost all the electronic device and their functionality is dependent on the perfection of PCBs. If PCBs do not function properly then the whole electric machine might fail. So, keeping this in mind researchers are working in this field to develop error free PCBs. Initially these PCBs were examined by the human beings manually, but the human error did not give good results as sometime defected PCBs were categorized as non-defective. So, researchers and experts transformed this… More >

  • Open Access

    ARTICLE

    A Cascaded Design of Best Features Selection for Fruit Diseases Recognition

    Faiz Ali Shah1, Muhammad Attique Khan2, Muhammad Sharif1, Usman Tariq3, Aimal Khan4, Seifedine Kadry5, Orawit Thinnukool6,*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1491-1507, 2022, DOI:10.32604/cmc.2022.019490 - 07 September 2021

    Abstract Fruit diseases seriously affect the production of the agricultural sector, which builds financial pressure on the country's economy. The manual inspection of fruit diseases is a chaotic process that is both time and cost-consuming since it involves an accurate manual inspection by an expert. Hence, it is essential that an automated computerised approach is developed to recognise fruit diseases based on leaf images. According to the literature, many automated methods have been developed for the recognition of fruit diseases at the early stage. However, these techniques still face some challenges, such as the similar symptoms… More >

  • Open Access

    ARTICLE

    Automatic Detection of COVID-19 Using a Stacked Denoising Convolutional Autoencoder

    Habib Dhahri1,2,*, Besma Rabhi3, Slaheddine Chelbi4, Omar Almutiry1, Awais Mahmood1, Adel M. Alimi3

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3259-3274, 2021, DOI:10.32604/cmc.2021.018449 - 24 August 2021

    Abstract The exponential increase in new coronavirus disease 2019 ({COVID-19}) cases and deaths has made COVID-19 the leading cause of death in many countries. Thus, in this study, we propose an efficient technique for the automatic detection of COVID-19 and pneumonia based on X-ray images. A stacked denoising convolutional autoencoder (SDCA) model was proposed to classify X-ray images into three classes: normal, pneumonia, and {COVID-19}. The SDCA model was used to obtain a good representation of the input data and extract the relevant features from noisy images. The proposed model’s architecture mainly composed of eight autoencoders, More >

  • Open Access

    ARTICLE

    Pseudo Zernike Moment and Deep Stacked Sparse Autoencoder for COVID-19 Diagnosis

    Yu-Dong Zhang1, Muhammad Attique Khan2, Ziquan Zhu3, Shui-Hua Wang4,*

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3145-3162, 2021, DOI:10.32604/cmc.2021.018040 - 24 August 2021

    Abstract (Aim) COVID-19 is an ongoing infectious disease. It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021. Traditional computer vision methods have achieved promising results on the automatic smart diagnosis. (Method) This study aims to propose a novel deep learning method that can obtain better performance. We use the pseudo-Zernike moment (PZM), derived from Zernike moment, as the extracted features. Two settings are introducing: (i) image plane over unit circle; and (ii) image plane inside the unit circle. Afterward, we use a deep-stacked sparse autoencoder (DSSAE) as the classifier. Besides, multiple-way… More >

  • Open Access

    ARTICLE

    Cotton Leaf Diseases Recognition Using Deep Learning and Genetic Algorithm

    Muhammad Rizwan Latif1, Muhamamd Attique Khan1, Muhammad Younus Javed1, Haris Masood2, Usman Tariq3, Yunyoung Nam4,*, Seifedine Kadry5

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 2917-2932, 2021, DOI:10.32604/cmc.2021.017364 - 24 August 2021

    Abstract Globally, Pakistan ranks 4 in cotton production, 6 as an importer of raw cotton, and 3 in cotton consumption. Nearly 10% of GDP and 55% of the country's foreign exchange earnings depend on cotton products. Approximately 1.5 million people in Pakistan are engaged in the cotton value chain. However, several diseases such as Mildew, Leaf Spot, and Soreshine affect cotton production. Manual diagnosis is not a good solution due to several factors such as high cost and unavailability of an expert. Therefore, it is essential to develop an automated technique that can accurately detect and recognize these… More >

  • Open Access

    ARTICLE

    Evolutionary GAN–Based Data Augmentation for Cardiac Magnetic Resonance Image

    Ying Fu1,2,*, Minxue Gong1, Guang Yang1, Hong Wei3, Jiliu Zhou1,2

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1359-1374, 2021, DOI:10.32604/cmc.2021.016536 - 22 March 2021

    Abstract Generative adversarial networks (GANs) have considerable potential to alleviate challenges linked to data scarcity. Recent research has demonstrated the good performance of this method for data augmentation because GANs synthesize semantically meaningful data from standard signal distribution. The goal of this study was to solve the overfitting problem that is caused by the training process of convolution networks with a small dataset. In this context, we propose a data augmentation method based on an evolutionary generative adversarial network for cardiac magnetic resonance images to extend the training data. In our structure of the evolutionary GAN,… More >

  • Open Access

    ARTICLE

    Real-Time Anomaly Detection in Packaged Food X-Ray Images Using Supervised Learning

    Kangjik Kim1, Hyunbin Kim1, Junchul Chun1, Mingoo Kang2, Min Hong3,*, Byungseok Min4

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2547-2568, 2021, DOI:10.32604/cmc.2021.014642 - 05 February 2021

    Abstract Physical contamination of food occurs when it comes into contact with foreign objects. Foreign objects can be introduced to food at any time during food delivery and packaging and can cause serious concerns such as broken teeth or choking. Therefore, a preventive method that can detect and remove foreign objects in advance is required. Several studies have attempted to detect defective products using deep learning networks. Because it is difficult to obtain foreign object-containing food data from industry, most studies on industrial anomaly detection have used unsupervised learning methods. This paper proposes a new method… More >

  • Open Access

    ARTICLE

    Autonomous Parking-Lots Detection with Multi-Sensor Data Fusion Using Machine Deep Learning Techniques

    Kashif Iqbal1,2, Sagheer Abbas1, Muhammad Adnan Khan3,*, Atifa Athar4, Muhammad Saleem Khan1, Areej Fatima3, Gulzar Ahmad1

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1595-1612, 2021, DOI:10.32604/cmc.2020.013231 - 26 November 2020

    Abstract The rapid development and progress in deep machine-learning techniques have become a key factor in solving the future challenges of humanity. Vision-based target detection and object classification have been improved due to the development of deep learning algorithms. Data fusion in autonomous driving is a fact and a prerequisite task of data preprocessing from multi-sensors that provide a precise, well-engineered, and complete detection of objects, scene or events. The target of the current study is to develop an in-vehicle information system to prevent or at least mitigate traffic issues related to parking detection and traffic… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Architecture for the Classification of Superhero Fashion Products: An Application for Medical-Tech Classification

    Inzamam Mashood Nasir1, Muhammad Attique Khan1,*, Majed Alhaisoni2, Tanzila Saba3, Amjad Rehman3, Tassawar Iqbal4

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 1017-1033, 2020, DOI:10.32604/cmes.2020.010943 - 21 August 2020

    Abstract Comic character detection is becoming an exciting and growing research area in the domain of machine learning. In this regard, recently, many methods are proposed to provide adequate performance. However, most of these methods utilized the custom datasets, containing a few hundred images and fewer classes, to evaluate the performances of their models without comparing it, with some standard datasets. This article takes advantage of utilizing a standard publicly dataset taken from a competition, and proposes a generic data balancing technique for imbalanced dataset to enhance and enable the in-depth training of the CNN. In More >

  • Open Access

    ARTICLE

    Effect of Data Augmentation of Renal Lesion Image by Nine-layer Convolutional Neural Network in Kidney CT

    Liying Wang1 , Zhiqiang Xu2, Shuihua Wang3,4,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 1001-1015, 2020, DOI:10.32604/cmes.2020.010753 - 21 August 2020

    Abstract Artificial Intelligence (AI) becomes one hotspot in the field of the medical images analysis and provides rather promising solution. Although some research has been explored in smart diagnosis for the common diseases of urinary system, some problems remain unsolved completely A nine-layer Convolutional Neural Network (CNN) is proposed in this paper to classify the renal Computed Tomography (CT) images. Four group of comparative experiments prove the structure of this CNN is optimal and can achieve good performance with average accuracy about 92.07 ± 1.67%. Although our renal CT data is not very large, we do More >

Displaying 71-80 on page 8 of 88. Per Page