Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    UNSTEADY BOUNDARY LAYER FLOW AND HEAT TRANSFER OF MAXWELL VISCOELASTIC FLUID WITH TIME FRACTIONAL CATTANEO-CHRISTOV HEAT FLUX MODEL

    Mengchen Zhanga , Hui Chenb,*, Ming Shena

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-7, 2018, DOI:10.5098/hmt.11.21

    Abstract The time fractional Cattaneo-Christov flux heat model is first introduced to investigate the flow and heat transfer of Maxwell viscoelastic fluid past a vertical flat plate. Fractional constitutive relation and Cattaneo-Christov heat flux model are applied to construct the governing boundary layer equations of momentum and energy, which are nondimensionalized by new dimensionless variables and solved numerically. The results indicate that there exist intersections on velocity and temperature profiles for different values of Prandtl number when the fractional Cattaneo-Christov flux heat model is considered. More >

  • Open Access

    ARTICLE

    MHD BOUNDARY LAYER FLOW AND HEAT TRANSFER OF A NANOFLUID PAST A RADIATIVE AND IMPULSIVE VERTICAL PLATE

    G. Dharmaiaha,†, N. Vedavathib , CH. Baby Ranic , K.S. Balamurugand

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-7, 2018, DOI:10.5098/hmt.11.14

    Abstract The time-dependent flow past an impulsively started vertical infinite plate in a viscous electrically conducting natural convective incompressible Nano-fluid is considered in this article by taking into account the effects of heat absorption, heat generation and radiation. An analytical study is performed to obtain exact solutions for water-based Nano-fluid TiO2. The dimensionless governing equations for this investigation are solved analytically by using the small perturbation Technique. The effects of various physical parameters on velocity, temperature fields are presented graphically. With the aid of these, the expression for the skin-friction and Nusselt number profiles was done with the help of tables. More >

  • Open Access

    ARTICLE

    MELTING AND RADIATION EFFECTS ON MIXED CONVECTION BOUNDARY LAYER VISCOUS FLOW OVER A VERTICAL PLATE IN PRESENCE OF HOMOGENEOUS HIGHER ORDER CHEMICAL REACTION

    D. R. V. S. R. K. Sastry

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-7, 2018, DOI:10.5098/hmt.11.3

    Abstract The present paper investigates the combined effects of melting phenomenon and viscous dissipation over a steady incompressible mixed convection boundary layer fluid flow along a vertical plate. Radiation and double dispersion are also taken into consideration. Further effect of homogeneous chemical reaction of order ’n’ is studied over the non-Darcy porous plate. Continuum equations that characterize fluid flow are transformed to a set of non linear ordinary differential equations through a suitable similarity transformation. These equations are then solved by MATLAB ’bvp4c’ iterative programming method. As a matter of accuracy and validation, available results are compared with the present study… More >

  • Open Access

    ARTICLE

    A STUDY ON MHD BOUNDARY LAYER FLOW ROTATING FRAME NANOFLUID WITH CHEMICAL REACTION

    N. Vedavathia , G. Dharmaiahb,* , K.S. Balamuruganc, K. Ramakrishnad

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-9, 2019, DOI:10.5098/hmt.12.10

    Abstract The effect of chemical reaction on MHD free convection heat transfer flow of a nanofluid bounded a semi-infinite flat surface in a rotating frame of reference is theoretically investigated. The velocity along the plate (slip velocity) is assumed to oscillate on time with constant frequency. The analytical solutions of different water based nanofluids containing TiO2, Al2O3, Ag, Cu and CuO of the boundary layers are assumed, to keep the problem as realistic as possible. The dimensionless governing equations for this investigation are solved analytically by using the small perturbation Technique. The effects of various physical parameters on velocity, temperature and… More >

  • Open Access

    ARTICLE

    FLUID FLOW AND HEAT TRANSFER OVER A STRETCHING SHEET WITH TEMPERATURE DEPENDENT PRANDTL NUMBER AND VISCOSITY

    N. Govindaraj, A. K. Singh, Pankaj Shukla

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-8, 2020, DOI:10.5098/hmt.15.20

    Abstract A numerical study of fluid flow over stretching sheet with temperature dependent properties has been performed induced by mixed convection. The significant variation of the Prandtl number and viscosity in the temperature is observed [see table 1]. Viscosity and Prandtl number are vary in inverse of the linear function. The physical problem modeled in the mathematical equations in dimension form, which is converted to the non-dimensional equations by applying similarity transformations and suitable boundary conditions. The mathematical modelling problem is transformed PDE’s are numerically solved using Quasilinearization technique and FDM. The current numerical data has been presented in terms of… More >

  • Open Access

    ARTICLE

    CFD ANALYSIS OF FREE CONVECTION IN NON-DARCIAN POROUS MEDIUM AND COMPARISON WITH SIMILARITY APPROACH

    Elyazid Flilihia,† , Mohammed Sritib, Driss Achemlala, Mohamed El harouic

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-6, 2021, DOI:10.5098/hmt.17.7

    Abstract In this work, a numerical simulation of steady and laminar free convection flow over a heated vertical flat plate embedded in a saturated porous medium by a Newtonian fluid is presented and analyzed. The Brinkman-Forchheimer extension of Darcy’s law has been adopted to describe the movement of fluid within the porous matrix. A numerical solution of the governing continuity, momentum and energy equations was made with the appropriate boundary conditions using ANSYS/FLUENT software based on finite volume method. The found results are graphically presented and physically discussed for main controling parameters. Subsequently, we compared our CFD calculation by the results… More >

  • Open Access

    ARTICLE

    STEADY MHD FLOW OVER A YAWED CYLINDER WITH MASS TRANSFER

    A. Sahaya Jenifera , P. Saikrishnana,*, J. Rajakumarb

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-8, 2021, DOI:10.5098/hmt.17.4

    Abstract This paper examines the steady magnetohydrodynamic (MHD) flow of water over a yawed cylinder with variable fluid properties and non-uniform mass transfer. The impact of viscous dissipation is taken into consideration. The velocity and temperature fields are governed by coupled nonlinear partial differential equations together with boundary constraints. These governing equations are converted to dimensionless form with suitable non-similar transformations and then solved using an implicit finite difference method and the quasi-linearization technique. The results indicate that the yaw angle enhancement declines the skin friction coefficient in the axial direction and the heat transfer coefficient. It is also ascertained that… More >

  • Open Access

    ARTICLE

    CASSON FLUID FLOW DUE TO STRETCHING SHEET WITH MAGNETIC EFFECT AND VARIABLE THERMAL CONDUCTIVITY

    M. Y. Dhangea,*, G. C. Sankada, Ishwar Maharudrappab

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-6, 2022, DOI:10.5098/hmt.18.36

    Abstract The present paper investigates the impacts of heat transfer and magnetic field on the boundary layer flow of Casson fluid over a linearly stretching sheet. The researchers have introduced analytical and numerical solutions for the momentum and energy equations by transforming the equations into the system of ordinary differential equations with the aid of the similarity transformations technique. The velocity and temperature profiles for pertinent constraints like Casson fluid constraint, Chandrasekhar number, Prandtl number, and thermal conductivity are presented through graphs. The influence of the wall shear stress and the Prandtl number increases while the boundary layer thickness decreases. Further,… More >

  • Open Access

    ARTICLE

    A Variational Multiscale Method for Particle Dispersion Modeling in the Atmosphere

    Y. Nishio1,*, B. Janssens1, K. Limam2, J. van Beeck3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 743-753, 2023, DOI:10.32604/fdmp.2022.021848

    Abstract A LES model is proposed to predict the dispersion of particles in the atmosphere in the context of Chemical, Biological, Radiological and Nuclear (CBRN) applications. The code relies on the Finite Element Method (FEM) for both the fluid and the dispersed solid phases. Starting from the Navier-Stokes equations and a general description of the FEM strategy, the Streamline Upwind Petrov-Galerkin (SUPG) method is formulated putting some emphasis on the related assembly matrix and stabilization coefficients. Then, the Variational Multiscale Method (VMS) is presented together with a detailed illustration of its algorithm and hierarchy of computational steps. It is demonstrated that… More >

  • Open Access

    ARTICLE

    Experimental Study on Heavy Oil Drag Reduction in Horizontal Pipelines by Water Annular Conveying

    Mingjun Du1,2, Jiaqiang Jing1,*, Xinqiang Xiong3, Bingbing Lang2, Xuan Wang2, Shiying Shi4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.1, pp. 81-91, 2022, DOI:10.32604/fdmp.2022.016640

    Abstract Transportation of heavy oil by the so-called water-ring technique is a very promising method by which pressure drop and pollution can be significantly reduced. Dedicated experiments have been carried out by changing the phase’s density, viscosity, velocity and interfacial tension to systematically analyze the characteristics of the water ring. On the basis of such experimental data, a mathematical model for pressure drop prediction has been introduced. This research shows that as long as the density of oil and water remains the same, a concentric water ring can effectively be formed. In such conditions, the oil-water viscosity difference has little effect… More >

Displaying 21-30 on page 3 of 58. Per Page