Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access


    Precise Rehabilitation Strategies for Functional Impairment in Children with Cerebral Palsy

    Yaojin Sun1, Nan Jiang1,*, Min Zhu1, Hao Hua2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3191-3202, 2023, DOI:10.32604/iasc.2023.035425

    Abstract This paper explores the effect of precise rehabilitation strategies under the international classification of functioning, disability and health for children and youth (ICF-CY) on the motor function of children with cerebral palsy. Under the framework of ICF-CY, the observation team is designed and evaluated from physical functions, activities and participation, environmental factors, and develops individualized rehabilitation strategies that are tailored to individual characteristics. The control group was assessed by traditional methods and treatment plans and measures were formulated and guided. The course of treatment was 12 months. The scores of GMFM-88, Peabody Motor Development Scale-2concluding fine motor quotient (PDMS-FM), WeeFIM… More >

  • Open Access


    Efficient Gait Analysis Using Deep Learning Techniques

    K. M. Monica, R. Parvathi*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6229-6249, 2023, DOI:10.32604/cmc.2023.032273

    Abstract Human Activity Recognition (HAR) has always been a difficult task to tackle. It is mainly used in security surveillance, human-computer interaction, and health care as an assistive or diagnostic technology in combination with other technologies such as the Internet of Things (IoT). Human Activity Recognition data can be recorded with the help of sensors, images, or smartphones. Recognizing daily routine-based human activities such as walking, standing, sitting, etc., could be a difficult statistical task to classify into categories and hence 2-dimensional Convolutional Neural Network (2D CNN) MODEL, Long Short Term Memory (LSTM) Model, Bidirectional long short-term memory (Bi-LSTM) are used… More >

  • Open Access


    A New Mixed Clustering-Based Method to Analyze the Gait of Children with Cerebral Palsy

    Jing Hu1, Ling Zhang1, Jie Li2,3,*, Qirun Wang4

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1551-1562, 2021, DOI:10.32604/cmc.2020.011829

    Abstract Cerebral palsy is a group of persistent central movement and postural developmental disorders, and restricted activity syndromes. This syndrome is caused by non-progressive brain damage to the developing fetus or infants. Cerebral palsy assessment can determine whether the brain is behind or abnormal. If it exists, early intervention and rehabilitation can be carried out as soon as possible to restore brain function to the greatest extent. The direct external manifestation of cerebral palsy is abnormal gait. Accurately determining the muscle strength-related reasons that cause this abnormal gait is the primary problem for treatment. In this paper, clustering methods were used… More >

Displaying 1-10 on page 1 of 3. Per Page  

Share Link