Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    ANALYSIS OF ARRHENIUS ACTIVATION ENERGY IN ELECTRICALLY CONDUCTING CASSON FLUID FLOW INDUCED DUE TO PERMEABLE ELONGATED SHEET WITH CHEMICAL REACTION AND VISCOUS DISSIPATION

    N. Vijayaa,*, S. M. Arifuzzamanb, N. Raghavendra Saic, Ch. Manikya Raod

    Frontiers in Heat and Mass Transfer, Vol.15, No.1, pp. 1-9, 2020, DOI:10.5098/hmt.15.26

    Abstract The upfront intension of this study is to explore the advances in electrically conducting Casson fluid induced due to a porous elongated surface taking Arrhenius activation energy, viscous dissipation and joule heating into account. Uniform magnetic and electric fields are imposed on the given flow. Variables of similarity are induced to transmute partial differential equations into dimensionless equations and resolved numerically by elegant method bvp4c. To scrutinize the behavior of critical parameters on flow configurations graphs and table are portrayed. From graphical moments, it is analyzed that velocity of the liquid diminish for advanced values of non-Newtonian rheology parameter, magnetic… More >

  • Open Access

    ARTICLE

    NUMERICAL SOLUTION OF THE EFFECTS OF HEAT AND MASS TRANSFER ON UNSTEADY MHD FREE CONVECTION FLOW PAST AN INFINITE VERTICAL PLATE

    D. Santhi Kumaria,*, Venkata Subrahmanyam Sajjaa, P. M. Kishoreb,†

    Frontiers in Heat and Mass Transfer, Vol.16, No.1, pp. 1-10, 2021, DOI:10.5098/hmt.16.24

    Abstract This study attempts to explore a qualitative analysis of the effects of Soret on an unsteady magnetohydrodynamics free convection flow of a chemically reacting incompressible fluid past an infinite vertical plate embedded in a porous medium taking the source of heat and thermal radiation into account as well as viscous dissipation. The central equations are scrupulously converted into sets of coupled nonlinear partial differential equations for providing logical solutions. The method of Galerkin finite element is used considering appropriate boundary conditions for diverse physical metrics and then numerically analyzed employing MATLAB. A significant change in velocity, temperature, concentration profiles is… More >

  • Open Access

    ARTICLE

    NUMERICAL APPROACH OF HEAT AND MASS TRANSFER OF MHD CASSON FLUID UNDER RADIATION OVER AN EXPONENTIALLY PERMEABLE STRETCHING SHEET WITH CHEMICAL REACTION AND HALL EFFECT

    G. R. Ganesh, W. Sridhar*

    Frontiers in Heat and Mass Transfer, Vol.16, No.1, pp. 1-11, 2021, DOI:10.5098/hmt.16.5

    Abstract In this paper, heat and mass transfer of MHD Casson fluid under radiation over an exponentially permeable stretching sheet with chemical reaction and Hall Effect investigated numerically. Suitable similarity transformations are used to convert the governing partial differential equations to nonlinear ordinary differential equations. Using a numerical technique named Keller box method the equations are then solved. Study of various effects such as chemical reaction, hall effect, suction /injection on magneto hydrodynamic Casson fluid along with radiation the heat source parameter, chemical reaction parameter, Schmidt number are tabulated for various parameters. Also local parameters are calculated and compared with previous… More >

  • Open Access

    ARTICLE

    MHD CASSON FLUID FLOW WITH AN INCLINED PLATE IN THE PRESENCE OF HALL AND ALIGNED MAGNETIC EFFECTS

    K. Kranthi Kumar1,*, CH. Baby Rani2 , A. V. Papa Rao3

    Frontiers in Heat and Mass Transfer, Vol.17, No.1, pp. 1-9, 2021, DOI:10.5098/hmt.17.2

    Abstract MHD Casson flow fluid over an inclined plate with aligned magnetic, Hall current and thermal radiation in the presence of Chemical reaction is examined. The governing equations are solved using perturbation method. The effects of various physical parameters like as chemical reaction parameter, radiation parameter, Casson parameter, Schmidt number, Grashof number, modified Grashof number, Prandtl number, magnetic parameter, inclined angle, Hall parameter and Aligned parameter are discussed for velocity, temperature and concentration. The skin-friction, Nusselt number and Sherwood number are also obtained and are shown in tabular form. More >

  • Open Access

    ARTICLE

    RADIATION AND CHEMICAL REACTION EFFECTS ON UNSTEADY VISCOELASTIC FLUID FLOW THROUGH POROUS MEDIUM

    Bamdeb Deya,† , Bhrigu Kumar Kalitab, Rita Choudhuryb

    Frontiers in Heat and Mass Transfer, Vol.18, No.1, pp. 1-8, 2022, DOI: 10.5098/hmt.18.32

    Abstract In this paper, we attempt to analyze the effects of radiation and chemical reactions on laminar boundary layer flow of an electrically conducting unsteady viscoelastic incompressible fluid flow along a vertical semi-infinite plate passing through porous channel. The coupled nonlinear partial differential equations for energy, momentum, and mass diffusions are solved analytically with the use of perturbation technique. Moreover, the analytical expressions for fluid velocity, temperature, and concentration distributions are obtained and interpreted using the software MATLAB. The enhancement of velocity is prominent with the growth of Gr, Gm, Nr and Kr but a reverse pattern is observed with the… More >

  • Open Access

    ARTICLE

    INDUCED MAGNETIC FIELD AND RADIATION ABSORPTION EFFECTS ON MHD FREE CONVECTIVE CHEMICALLY REACTING FLUID FLOW

    K.S. Balamurugana,*, S. Sreelathab

    Frontiers in Heat and Mass Transfer, Vol.18, No.1, pp. 1-8, 2022, DOI:10.5098/hmt.18.21

    Abstract This study is focused on the investigation of magneto hydrodynamic mixed convection radiative heat and mass transfer flow of a steady, viscous, incompressible electrically conducting Newtonian fluid which is an optically thin gray gas over a permeable vertical infinite plate in the presence of first order chemical reaction, temperature gradient heat source, induced magnetic field and magnetic Prandtl number. The governing equations for this flow model are formulated and solved using perturbation technique. The velocity, temperature, concentration and induced magnetic field are studied through graphs, and the skin friction coefficient, Nusselt number and Sherwood number are discussed through tables in… More >

  • Open Access

    ARTICLE

    EFFECT OF MELTING HEAT TRANSFER AND THERMAL RADIATION ON SQUEEZING FLOW OF A CASSON FLUID WITH CHEMICAL REACTION IN POROUS MEDIUM

    Bhagawan Singh Yadav, Sushila Choudhary

    Frontiers in Heat and Mass Transfer, Vol.18, No.1, pp. 1-10, 2022, DOI:10.5098/hmt.18.18

    Abstract The present study concentrates on squeeze MHD flow of Casson fluid between parallel plates surrounded by a porous medium. The influence of melting, viscous dissipation and thermal radiation on the heat transfer process is disclosed. The characteristics of mass transport are detected with chemical reactions. Suitable similarity transforms are used to convert the partial differential equations into a system of ordinary differential equations. The transformed equations are solved using the bvp4c matlab solver with the shooting method. Our present study concluded that fluid velocity has direct relation with melting parameter while it is reciprocally related to squeezing parameter and reverse… More >

  • Open Access

    ARTICLE

    IMPACT OF CHEMICAL REACTION, SORET NUMBER AND HEAT SOURCE ON UNSTEADY MHD CASSON FLUID FLOW PAST VERTICAL SURFACE

    K.V. Chandra Sekhar*

    Frontiers in Heat and Mass Transfer, Vol.19, No.1, pp. 1-8, 2022, DOI:10.5098/hmt.19.36

    Abstract The current study explores heat and mass transfer analysis of unstable MHD boundary layer flow of electrically conducting Casson fluid near an infinite Perpendicular porous plate, moving with variable velocity. Mass diffusion equation was described by the homogenous first order chemical reaction. The equations controlling the flow converted into dimensionless form and solved by applying Laplace transform method and the expressions for velocity, temperature and concentration of the flow are acquired in exact form. To understand the physical insight of the problem a detailed study of involved parameters of the flow was done and explained in detailed with graphs. The… More >

  • Open Access

    ARTICLE

    EFFECT OF DIFFUSION-THERMO ON MHD FLOW OF MAXWELL FLUID WITH HEAT AND MASS TRANSFER

    Muhammad Ramzana,*, Zaib Un Nisab , Mudassar Nazara,c,†

    Frontiers in Heat and Mass Transfer, Vol.19, No.1, pp. 1-9, 2022, DOI:10.5098/hmt.19.12

    Abstract A magnetohydrodynamics (MHD) flow of fractional Maxwell fluid past an exponentially accelerated vertical plate is considered. In addition, other factors such as heat generation and chemical reaction are used in the problem. The flow model is solved using Caputo fractional derivative. Initially, the governing equations are made non-dimensional and then solved by Laplace transform. The influence of different parameters like diffusion thermo, fractional parameter, Magnetic field, chemical reaction, Prandtl number and Maxwell parameter are discussed through numerous graphs. From figures, it is observed that fluid motion decreases with increasing values of Schmidt number and chemical reaction, whereas velocity field decreases… More >

  • Open Access

    ARTICLE

    Influence of Thermophoresis and Brownian Motion of Nanoparticles on Radiative Chemically-Reacting MHD Hiemenz Flow over a Nonlinear Stretching Sheet with Heat Generation

    S. Mohammed Ibrahim1, P. Vijaya Kumar2, G. Lorenzini3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 855-868, 2023, DOI:10.32604/fdmp.2022.019796

    Abstract In this study, a radiative MHD stagnation point flow over a nonlinear stretching sheet incorporating thermophoresis and Brownian motion is considered. Using a similarity method to reshape the underlying Partial differential equations into a set of ordinary differential equations (ODEs), the implications of heat generation, and chemical reaction on the flow field are described in detail. Moreover a Homotopy analysis method (HAM) is used to interpret the related mechanisms. It is found that an increase in the magnetic and velocity exponent parameters can damp the fluid velocity, while thermophoresis and Brownian motion promote specific thermal effects. The results also demonstrate… More >

Displaying 1-10 on page 1 of 25. Per Page  

Share Link