Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (492)
  • Open Access

    ARTICLE

    Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection

    Ling Tan1,*, Chong Li2, Jingming Xia2, Jun Cao3

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 275-288, 2019, DOI:10.32604/cmc.2019.03735

    Abstract Due to the widespread use of the Internet, customer information is vulnerable to computer systems attack, which brings urgent need for the intrusion detection technology. Recently, network intrusion detection has been one of the most important technologies in network security detection. The accuracy of network intrusion detection has reached higher accuracy so far. However, these methods have very low efficiency in network intrusion detection, even the most popular SOM neural network method. In this paper, an efficient and fast network intrusion detection method was proposed. Firstly, the fundamental of the two different methods are introduced More >

  • Open Access

    ARTICLE

    An Efficient Crossing-Line Crowd Counting Algorithm with Two-Stage Detection

    Zhenqiu Xiao1,*, Bin Yang2, Desy Tjahjadi3

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 1141-1154, 2019, DOI:10.32604/cmc.2019.05638

    Abstract Crowd counting is a challenging task in crowded scenes due to heavy occlusions, appearance variations and perspective distortions. Current crowd counting methods typically operate on an image patch level with overlaps, then sum over the patches to get the final count. In this paper we describe a real-time pedestrian counting framework based on a two-stage human detection algorithm. Existing works with overhead cameras is mainly based on visual tracking, and their robustness is rather limited. On the other hand, some works, which focus on improving the performances, are too complicated to be realistic. By adopting… More >

  • Open Access

    ARTICLE

    Fuzzy C-Means Algorithm Automatically Determining Optimal Number of Clusters

    Ruikang Xing1,*, Chenghai Li1

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 767-780, 2019, DOI:10.32604/cmc.2019.04500

    Abstract In clustering analysis, the key to deciding clustering quality is to determine the optimal number of clusters. At present, most clustering algorithms need to give the number of clusters in advance for clustering analysis of the samples. How to gain the correct optimal number of clusters has been an important topic of clustering validation study. By studying and analyzing the FCM algorithm in this study, an accurate and efficient algorithm used to confirm the optimal number of clusters is proposed for the defects of traditional FCM algorithm. For time and clustering accuracy problems of FCM More >

  • Open Access

    ARTICLE

    Controlled Secure Direct Communication Protocol via the Three-Qubit Partially Entangled Set of States

    Gang Xu1,2,*, Ke Xiao1,*, Zongpeng Li3, Xin-Xin Niu2,4, Michael Ryan5

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 809-827, 2019, DOI:10.32604/cmc.2019.04400

    Abstract In this paper, we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme, which was found insecure under two kinds of attacks, fake entangled particles attack and disentanglement attack. Then, by changing the party of the preparation of cluster states and using unitary operations, we present an improved protocol which can avoid these two kinds of attacks. Moreover, the protocol is proposed using the three-qubit partially entangled set of states. It is more efficient by only using three particles rather than four or even more to transmit one More >

  • Open Access

    ARTICLE

    An Asynchronous Clustering and Mobile Data Gathering Schema Based on Timer Mechanism in Wireless Sensor Networks

    Jin Wang1,2,3, Yu Gao3, Wei Liu3, Wenbing Wu1, Se-Jung Lim4,*

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 711-725, 2019, DOI:10.32604/cmc.2019.05450

    Abstract Recently, Wireless sensor networks (WSNs) have become very popular research topics which are applied to many applications. They provide pervasive computing services and techniques in various potential applications for the Internet of Things (IoT). An Asynchronous Clustering and Mobile Data Gathering based on Timer Mechanism (ACMDGTM) algorithm is proposed which would mitigate the problem of “hot spots” among sensors to enhance the lifetime of networks. The clustering process takes sensors’ location and residual energy into consideration to elect suitable cluster heads. Furthermore, one mobile sink node is employed to access cluster heads in accordance with More >

  • Open Access

    ARTICLE

    An Energy-Efficient Protocol Using an Objective Function & Random Search with Jumps for WSN

    Mohammed Kaddi1,3,*, Khelifa Benahmed2, Mohammed Omari3

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 603-624, 2019, DOI:10.32604/cmc.2019.05341

    Abstract Wireless Sensor Networks (WSNs) have hardware and software limitations and are deployed in hostile environments. The problem of energy consumption in WSNs has become a very important axis of research. To obtain good performance in terms of the network lifetime, several routing protocols have been proposed in the literature. Hierarchical routing is considered to be the most favorable approach in terms of energy efficiency. It is based on the concept parent-child hierarchy where the child nodes forward their messages to their parent, and then the parent node forwards them, directly or via other parent nodes,… More >

  • Open Access

    ARTICLE

    An Improved Unsupervised Image Segmentation Method Based on Multi-Objective Particle Swarm Optimization Clustering Algorithm

    Zhe Liu1,2,*, Bao Xiang1,3, Yuqing Song1, Hu Lu1, Qingfeng Liu1

    CMC-Computers, Materials & Continua, Vol.58, No.2, pp. 451-461, 2019, DOI:10.32604/cmc.2019.04069

    Abstract Most image segmentation methods based on clustering algorithms use single-objective function to implement image segmentation. To avoid the defect, this paper proposes a new image segmentation method based on a multi-objective particle swarm optimization (PSO) clustering algorithm. This unsupervised algorithm not only offers a new similarity computing approach based on electromagnetic forces, but also obtains the proper number of clusters which is determined by scale-space theory. It is experimentally demonstrated that the applicability and effectiveness of the proposed multi-objective PSO clustering algorithm. More >

  • Open Access

    ARTICLE

    Research on the Clustering Analysis and Similarity in Factor Space

    Sha-Sha Li1,2,∗, Tie-Jun Cui1,2,3,†, Jian Liu1,2,‡

    Computer Systems Science and Engineering, Vol.33, No.5, pp. 397-404, 2018, DOI:10.32604/csse.2018.33.397

    Abstract In this paper, we study the in uence of multiple domain attributes on the clustering analysis of object based on factor space. The representation method of graphical domain attribute is proposed for the object, which is called attribute circle. An attribute circle can represent infinite domain attributes. The similarity analysis of objects is first based on the concept of attribute circle, and the definition of graphical similarity is transformed into the definition of numerical similarity, and then the clustering analysis method of object set is studied and improved. Considering three kinds of graphical overlap, the… More >

  • Open Access

    ARTICLE

    A Novel Cardholder Behavior Model for Detecting Credit Card Fraud

    Yiğit Kültür, Mehmet Ufuk Çağlayan

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 807-817, 2018, DOI:10.1080/10798587.2017.1342415

    Abstract Because credit card fraud costs the banking sector billions of dollars every year, decreasing the losses incurred from credit card fraud is an important driver for the sector and end-users. In this paper, we focus on analyzing cardholder spending behavior and propose a novel cardholder behavior model for detecting credit card fraud. The model is called the Cardholder Behavior Model (CBM). Two focus points are proposed and evaluated for CBMs. The first focus point is building the behavior model using single-card transactions versus multi-card transactions. As the second focus point, we introduce holiday seasons as More >

  • Open Access

    ARTICLE

    An Intelligent Incremental Filtering Feature Selection and Clustering Algorithm for Effective Classification

    U. Kanimozhi, D. Manjula

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 701-709, 2018, DOI:10.1080/10798587.2017.1307626

    Abstract We are witnessing the era of big data computing where computing the resources is becoming the main bottleneck to deal with those large datasets. In the case of high-dimensional data where each view of data is of high dimensionality, feature selection is necessary for further improving the clustering and classification results. In this paper, we propose a new feature selection method, Incremental Filtering Feature Selection (IF2S) algorithm, and a new clustering algorithm, Temporal Interval based Fuzzy Minimal Clustering (TIFMC) algorithm that employs the Fuzzy Rough Set for selecting optimal subset of features and for effective More >

Displaying 461-470 on page 47 of 492. Per Page