Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (487)
  • Open Access

    ARTICLE

    Parallel Computing Performance of Thermal-Structural Coupled Analysis in Parallel Computing Resource

    Jong Keun Moon1, Seung Jo Kim2

    CMES-Computer Modeling in Engineering & Sciences, Vol.67, No.3, pp. 239-264, 2010, DOI:10.3970/cmes.2010.067.239

    Abstract Large structural problems with high precision and complexity require a high-performance computation using the efficient parallel algorithm. The purpose of this paper is to present the parallel performance of thermal-structural coupled analysis tested on a parallel cluster system. In the coupled analysis, the heat transfer analysis is carried out, and then the structural analysis is performed based on temperature distribution. For the automatic and efficient connection of two parallel analysis modules, the several communication patterns were studied. The parallel performance was demonstrated for the sample and the real application problems, such as a laminated composite More >

  • Open Access

    ARTICLE

    Computational Quantum Mechanics Simulation on the Photonic Properties of Group-III Nitride Clusters

    Che-Wun Hong1,2, Chia-Yun Tsai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.67, No.2, pp. 79-94, 2010, DOI:10.3970/cmes.2010.067.079

    Abstract This paper describes the quantum mechanical simulation on the photonic properties of group-III nitride clusters, whose bulk types are common materials for light emitting diodes (LEDs). In order to emit different colors of light using the same semiconductor materials, it is possible to vary the band gap by controlling the quantum dot sizes or doping a third atom theoretically. Density functional theory (DFT) calculations are performed to analyze a set of binary (GaN)n (3≤n≤32) and ternary InxGa1-xN (0≤x≤0.375) clusters to study their photonic characteristics. The ground state structures are optimized to calculate the binding energies using More >

  • Open Access

    ARTICLE

    Models for the recent evolution of protocadherin gene clusters

    MARCOS MORGAN

    BIOCELL, Vol.32, No.1, pp. 9-26, 2008, DOI:10.32604/biocell.2008.32.009

    Abstract The clustered protocadherins (Pcdhs) are single-pass transmembrane proteins that constitute a subfamily within the cadherin superfamily. In mammals, they are arranged in three consecutive clusters named α, β, and γ. These proteins are expressed in the nervous system and are targeted to mature synapses. Interestingly, different neurons express different subsets of isoforms; however, little is known about the functions and expression of the clustered Pcdhs.
    Previous phylogenetic analyses that compared rodent and human clusters postulated the recent occurrence of gene duplication events. Using standard phylogenetic methods, I confirmed the prior observations, and I show that… More >

  • Open Access

    ARTICLE

    Buckling in Wurtzite-Like AlN Nanostructures and Crystals: Why Nano can be Different

    C. J. F. Solano, A. Costales, E. Francisco, A. Martín Pendás, Miguel A. Blanco1, K.-C. Lau, H. He, Ravindra Pandey2

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.2&3, pp. 143-156, 2008, DOI:10.3970/cmes.2008.024.143

    Abstract The buckling of hexagonal layers in bulk and nanostructures of AlN is analyzed in the framework of atomistic and first principles techniques. At ambient conditions, the wurtzite structure (B4) of AlN consists of buckled hexagons. On the other hand, a non-buckled Bk structure is found to be metastable at zero pressure, being favored at higher pressures. It is suggested that the energy ordering of B4 and Bk may change in finite systems; an assertion tested in this study by considering finite slabs, nanobelts, and nanorings, and comparing the results with the previous studies on small clusters,… More >

  • Open Access

    ARTICLE

    PMMC cluster analysis

    S. Yotte1, J. Riss, D. Breysse, S. Ghosh

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.2, pp. 171-188, 2004, DOI:10.3970/cmes.2004.005.171

    Abstract Particle distribution influences the particulate reinforced metal matrix composites (PMMC). The knowledge of particle distribution is essential for material design. The study of particle distribution relies on analysis of material images. In this paper three methods are used on an image of an Al/SiC composite. The first method consists in applying successive dilations to the image. At each step the number of objects and the total object area are determined. The decrease of the number of objects as a function of the area is an indicator of characteristic distances. The second method is based on… More >

  • Open Access

    ARTICLE

    A New Application of the Panel Clustering Method for 3D SGBEM

    A. Aimi1, M. Diligenti1, F. Lunardini1, A. Salvadori2

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.1, pp. 31-50, 2003, DOI:10.3970/cmes.2003.004.031

    Abstract This paper is devoted to the study of a new application of the Panel Clustering Method [Hackbusch and Sauter (1993); Hackbusch and Nowak (1989)]. By considering a classical 3D Neumann screen problem in its boundary integral formulation discretized with the Galerkin BEM, which requires the evaluation of double integrals with hypersingular kernel, we recall and use some recent results of analytical evaluation of the inner hypersingular integrals. Then we apply the Panel Clustering Method (PCM) for the evaluation of the outer integral. For this approach error estimate is shown. Numerical examples and comparisons with classical More >

  • Open Access

    ARTICLE

    Computer Simulation of Fundamental Behaviors of Point Defects, Clusters and Interaction with Dislocations in Fe and Ni

    E. Kuramoto, K. Ohsawa, T. Tsutsumi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.2, pp. 193-200, 2002, DOI:10.3970/cmes.2002.003.193

    Abstract In order to investigate the interaction of point defects with a dislocation, an interstitial cluster or a SFT (stacking fault tetrahedron), computer simulation has been carried out in model Fe and Ni crystals. The capture zone (the region where the interaction energy is larger than kT) was determined for various interactions. Calculated capture zone for T =500°C for SIAs (crowdion and dumbbell) around a straight edge dislocation is larger than that for a vacancy in both Fe and Ni. Capture zones for Ni are larger than those for Fe, suggesting that Ni (fcc) has a More >

Displaying 481-490 on page 49 of 487. Per Page