Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Semi-Supervised Clustering Algorithm Based on Deep Feature Mapping

    Xiong Xu1, Chun Zhou2,*, Chenggang Wang1, Xiaoyan Zhang2, Hua Meng2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 815-831, 2023, DOI:10.32604/iasc.2023.034656

    Abstract Clustering analysis is one of the main concerns in data mining. A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other. Therefore, measuring the distance between sample points is crucial to the effectiveness of clustering. Filtering features by label information and measuring the distance between samples by these features is a common supervised learning method to reconstruct distance metric. However, in many application scenarios, it is very expensive to obtain a large number of labeled samples. In this paper, to solve the clustering… More >

  • Open Access

    REVIEW

    Application of U-Net and Optimized Clustering in Medical Image Segmentation: A Review

    Jiaqi Shao1,#, Shuwen Chen1,2,3,#,*, Jin Zhou1,#, Huisheng Zhu1, Ziyi Wang1, Mackenzie Brown4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2173-2219, 2023, DOI:10.32604/cmes.2023.025499

    Abstract As a mainstream research direction in the field of image segmentation, medical image segmentation plays a key role in the quantification of lesions, three-dimensional reconstruction, region of interest extraction and so on. Compared with natural images, medical images have a variety of modes. Besides, the emphasis of information which is conveyed by images of different modes is quite different. Because it is time-consuming and inefficient to manually segment medical images only by professional and experienced doctors. Therefore, large quantities of automated medical image segmentation methods have been developed. However, until now, researchers have not developed a universal method for all… More >

  • Open Access

    ARTICLE

    Nonlinear Teager-Kaiser Infomax Boost Clustering Algorithm for Brain Tumor Detection Technique

    P. M. Siva Raja1,*, S. Brinthakumari2, K. Ramanan3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2589-2599, 2023, DOI:10.32604/csse.2023.028542

    Abstract Brain tumor detection and division is a difficult tedious undertaking in clinical image preparation. When it comes to the new technology that enables accurate identification of the mysterious tissues of the brain, magnetic resonance imaging (MRI) is a great tool. It is possible to alter the tumor’s size and shape at any time for any number of patients by using the Brain picture. Radiologists have a difficult time sorting and classifying tumors from multiple images. Brain tumors may be accurately detected using a new approach called Nonlinear Teager-Kaiser Iterative Infomax Boost Clustering-Based Image Segmentation (NTKFIBC-IS). Teager-Kaiser filtering is used to… More >

  • Open Access

    ARTICLE

    Employment Quality Evaluation Model Based on Hybrid Intelligent Algorithm

    Xianhui Gu1,*, Xiaokan Wang1, Shuang Liang2

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 131-139, 2023, DOI:10.32604/cmc.2023.028756

    Abstract In order to solve the defect of large error in current employment quality evaluation, an employment quality evaluation model based on grey correlation degree method and fuzzy C-means (FCM) is proposed. Firstly, it analyzes the related research work of employment quality evaluation, establishes the employment quality evaluation index system, collects the index data, and normalizes the index data; Then, the weight value of employment quality evaluation index is determined by Grey relational analysis method, and some unimportant indexes are removed; Finally, the employment quality evaluation model is established by using fuzzy cluster analysis algorithm, and compared with other employment quality… More >

  • Open Access

    ARTICLE

    Fuzzy Fruit Fly Optimized Node Quality-Based Clustering Algorithm for Network Load Balancing

    P. Rahul1,*, N. Kanthimathi1, B. Kaarthick2, M. Leeban Moses1

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1583-1600, 2023, DOI:10.32604/csse.2023.027424

    Abstract Recently, the fundamental problem with Hybrid Mobile Ad-hoc Networks (H-MANETs) is to find a suitable and secure way of balancing the load through Internet gateways. Moreover, the selection of the gateway and overload of the network results in packet loss and Delay (DL). For optimal performance, it is important to load balance between different gateways. As a result, a stable load balancing procedure is implemented, which selects gateways based on Fuzzy Logic (FL) and increases the efficiency of the network. In this case, since gateways are selected based on the number of nodes, the Energy Consumption (EC) was high. This… More >

  • Open Access

    ARTICLE

    P-ROCK: A Sustainable Clustering Algorithm for Large Categorical Datasets

    Ayman Altameem1, Ramesh Chandra Poonia2, Ankit Kumar3, Linesh Raja4, Abdul Khader Jilani Saudagar5,*

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 553-566, 2023, DOI:10.32604/iasc.2023.027579

    Abstract Data clustering is crucial when it comes to data processing and analytics. The new clustering method overcomes the challenge of evaluating and extracting data from big data. Numerical or categorical data can be grouped. Existing clustering methods favor numerical data clustering and ignore categorical data clustering. Until recently, the only way to cluster categorical data was to convert it to a numeric representation and then cluster it using current numeric clustering methods. However, these algorithms could not use the concept of categorical data for clustering. Following that, suggestions for expanding traditional categorical data processing methods were made. In addition to… More >

  • Open Access

    ARTICLE

    Design of Clustering Techniques in Cognitive Radio Sensor Networks

    R. Ganesh Babu1,*, D. Hemanand2, V. Amudha3, S. Sugumaran4

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 441-456, 2023, DOI:10.32604/csse.2023.024049

    Abstract In recent decades, several optimization algorithms have been developed for selecting the most energy efficient clusters in order to save power during transmission to a shorter distance while restricting the Primary Users (PUs) interference. The Cognitive Radio (CR) system is based on the Adaptive Swarm Distributed Intelligent based Clustering algorithm (ASDIC) that shows better spectrum sensing among group of multiusers in terms of sensing error, power saving, and convergence time. In this research paper, the proposed ASDIC algorithm develops better energy efficient distributed cluster based sensing with the optimal number of clusters on their connectivity. In this research, multiple random… More >

  • Open Access

    ARTICLE

    Improving Method of Anomaly Detection Performance for Industrial IoT Environment

    Junwon Kim1, Jiho Shin2, Ki-Woong Park3, Jung Taek Seo4,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5377-5394, 2022, DOI:10.32604/cmc.2022.026619

    Abstract Industrial Control System (ICS), which is based on Industrial IoT (IIoT), has an intelligent mobile environment that supports various mobility, but there is a limit to relying only on the physical security of the ICS environment. Due to various threat factors that can disrupt the workflow of the IIoT, machine learning-based anomaly detection technologies are being presented; it is also essential to study for increasing detection performance to minimize model errors for promoting stable ICS operation. In this paper, we established the requirements for improving the anomaly detection performance in the IIoT-based ICS environment by analyzing the related cases. After… More >

  • Open Access

    ARTICLE

    Analyzing the Urban Hierarchical Structure Based on Multiple Indicators of Economy and Industry: An Econometric Study in China

    Jing Cheng1, Yang Xie2, Jie Zhang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1831-1855, 2022, DOI:10.32604/cmes.2022.020178

    Abstract For a city, analyzing its advantages, disadvantages and the level of economic development in a country is important, especially for the cities in China developing at flying speed. The corresponding literatures for the cities in China have not considered the indicators of economy and industry in detail. In this paper, based on multiple indicators of economy and industry, the urban hierarchical structure of 285 cities above the prefecture level in China is investigated. The indicators from the economy, industry, infrastructure, medical care, population, education, culture, and employment levels are selected to establish a new indicator system for analyzing urban hierarchical… More >

  • Open Access

    ARTICLE

    Energy-Efficient Cluster in Wireless Sensor Network Using Life Time Delay Clustering Algorithms

    V. Kumar1,*, N. Jayapandian2, P. Balasubramanie3

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 77-86, 2022, DOI:10.32604/csse.2022.023481

    Abstract Through Wireless Sensor Networks (WSN) formation, industrial and academic communities have seen remarkable development in recent decades. One of the most common techniques to derive the best out of wireless sensor networks is to upgrade the operating group. The most important problem is the arrangement of optimal number of sensor nodes as clusters to discuss clustering method. In this method, new client nodes and dynamic methods are used to determine the optimal number of clusters and cluster heads which are to be better organized and proposed to classify each round. Parameters of effective energy use and the ability to decide… More >

Displaying 1-10 on page 1 of 26. Per Page  

Share Link