Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    ARTICLE

    Artificial Neural Network (ANN) Approach for Predicting Concrete Compressive Strength by SonReb

    Mario Bonagura, Lucio Nobile*

    Structural Durability & Health Monitoring, Vol.15, No.2, pp. 125-137, 2021, DOI:10.32604/sdhm.2021.015644

    Abstract The compressive strength of concrete is one of most important mechanical parameters in the performance assessment of existing reinforced concrete structures. According to various international codes, core samples are drilled and tested to obtain the concrete compressive strengths. Non-destructive testing is an important alternative when destructive testing is not feasible without damaging the structure. The commonly used non-destructive testing (NDT) methods to estimate the in-situ values include the Rebound hammer test and the Ultrasonic Pulse Velocity test. The poor reliability of these tests due to different aspects could be partially contrasted by using both methods together, as proposed.in the SonReb… More >

  • Open Access

    ARTICLE

    Improving the Unconfined Compressive Strength of Red Clay by Combining Biopolymers with Fibers

    Zhiyu Weng1, Lina Wang1,2,*, Qiang Liu2, Xuemin Pan1, Yonghao Xu3, Jing Li1

    Journal of Renewable Materials, Vol.9, No.8, pp. 1503-1517, 2021, DOI:10.32604/jrm.2021.015003

    Abstract To explore an environmentally friendly improvement measure for red clay, the function and mechanism of xanthan gum biopolymer and polypropylene fibers on the strength properties of red clay were investigated by unconfined compressive strength and scanning electron microscopy tests. The test results demonstrated that the contents and curing ages of xanthan gum had significant influences on the unconfined compressive strength of red clay. Compared with untreated soil, 1.5% xanthan gum content was the optimal ratio in which the strength increment was between 41.52 kPa and 64.73 kPa. On the other hand, the strength of xanthan gum-treated red clay increased, whereas… More >

  • Open Access

    ARTICLE

    Development of a Soil Stabilizer for Road Subgrade Based on Original Phosphogypsum

    Zenghuan Gu1, Aiguo Fang2, Sudong Hua1,*, Qingzhou Zhao2, Lidong Sun2, Fan Xia2, Liying Qian3, Xiaojian Ren3

    Journal of Renewable Materials, Vol.9, No.2, pp. 253-268, 2021, DOI:10.32604/jrm.2021.011912

    Abstract The research used industrial by-products original phosphogypsum (PG) as the main raw material, slag (SG) and Portland cement (PC) as auxiliary materials, and the optimal additive amount was determined according to the compressive strength value of the sample. Comprehensively evaluate the water resistance and volume stability of the samples, and determine the best formula for new roadbed stabilized materials. The results showed that when the weight ratio of PG, slag and cement was OPG:SG:PC = 6:3:1, and mixed with 5% micro silica fume (MSF) and 3‰ hydroxypropyl methyl cellulose (HPMC), the sample’s comprehensive performance was the best, specifically, the sample’s… More >

  • Open Access

    REVIEW

    A Review on the Utilization of Waste Material for Autoclaved Aerated Concrete Production

    R. A. Rahman1, A. Fazlizan1,*, N. Asim1, A. Thongtha2

    Journal of Renewable Materials, Vol.9, No.1, pp. 61-72, 2021, DOI:10.32604/jrm.2021.013296

    Abstract Autoclaved aerated concrete (AAC) has become more attractive due to its excellent and environmental-friendly properties in building construction. AAC is relatively lightweight, possesses lower thermal conductivity, higher heat resistance, lower shrinkage, and fasten construction than normal concrete. AAC is a combination of silica sand, cement, gypsum, lime, water, and an expansion agent. To improve its physical and mechanical properties and reduce its production cost, tremendous innovations where waste materials were utilized as partial replacement of AAC materials were done. This paper is intended to present the literature on the utilization of waste materials as a means of a partial replacement… More >

  • Open Access

    ARTICLE

    Experimental Research of Concrete with Steel Slag Powder and Zeolite Powder

    Yang Ming1,2,3, Ping Chen1,2,3,*, Yuanhao Wang1,2,3,*, Ling Li1,2,3, Xuandong Chen1,2,3, Pengliang Sun1,2,3,4

    Journal of Renewable Materials, Vol.8, No.12, pp. 1647-1655, 2020, DOI:10.32604/jrm.2020.011929

    Abstract In order to increase use ratio of steel slag solid waste, the concrete containing steel slag powder and zeolite powder as admixtures was prepared by using the orthogonal test method. The effects of water-binder ratio, sand ratio, steel slag powder content and zeolite powder on working properties, mechanical strength and chloride ion permeability of the concrete was studied. It was found that the early strength of the concrete had a decrease with the mixing of steel slag and zeolite powders, but its later strength approached to pure concrete. Moreover, the physical filling and pozzolanic activity of the admixtures increased the… More >

  • Open Access

    ARTICLE

    Mechanical Properties of Lime-Fly Ash-Sulphate Aluminum Cement Stabilized Loess

    Liang Jia, Chunxiang Li, Jian Guo*

    Journal of Renewable Materials, Vol.8, No.10, pp. 1357-1373, 2020, DOI:10.32604/jrm.2020.012136

    Abstract Lime-fly ash stabilized loess has a poor early strength, which results in a later traffic opening time when it is used as road-base materials. Consideration of the significant early strength characteristics of sulphate aluminum cement (SAC), it is always added into the lime-fly ash mixtures to improve the early strength of stabilized loess. However, there is a scarcity of research on the mechanical behavior of lime-fly ash-SAC stabilized loess and there is a lack of quantitative evaluation of loess stabilized with binder materials. This research explored the effects of the amount of binder materials, curing time and porosity on the… More >

  • Open Access

    ARTICLE

    Predicting Concrete Compressive Strength Using Deep Convolutional Neural Network Based on Image Characteristics

    Sanghyo Lee1, Yonghan Ahn2, Ha Young Kim3, *

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 1-17, 2020, DOI:10.32604/cmc.2020.011104

    Abstract In this study, we examined the efficacy of a deep convolutional neural network (DCNN) in recognizing concrete surface images and predicting the compressive strength of concrete. A digital single-lens reflex (DSLR) camera and microscope were simultaneously used to obtain concrete surface images used as the input data for the DCNN. Thereafter, training, validation, and testing of the DCNNs were performed based on the DSLR camera and microscope image data. Results of the analysis indicated that the DCNN employing DSLR image data achieved a relatively higher accuracy. The accuracy of the DSLR-derived image data was attributed to the relatively wider range… More >

  • Open Access

    ARTICLE

    Progressive Damage Analysis (PDA) of Carbon Fiber Plates with Out-of-Plane Fold under Pressure

    Tao Zhang, Jinglan Deng*, Jihui Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 545-559, 2020, DOI:10.32604/cmes.2020.09536

    Abstract The out-of-plane fold is a common defect of composite materials during the manufacturing process and will greatly affect the compressive strength as well as the service life. Making it of great importance to investigate the influence of out-of-plane defects to the compressive strength of laminate plates of composite materials, and to understand the patterns of defect evolution. Therefore, the strip method is applied in this article to create out-of-plane defects with different aspect ratios in laminated plates of composite materials, and a compressive performance test is conducted to quantify the influence of out-of-plane defects. The result shows that the compressive… More >

  • Open Access

    ARTICLE

    On Designing Biopolymer-Bound Soil Composites (BSC) for Peak Compressive Strength

    Isamar Rosa1, Henning Roedel1, Maria I. Allende1, Michael D. Lepech1,*, David J. Loftus2

    Journal of Renewable Materials, Vol.8, No.8, pp. 845-861, 2020, DOI:10.32604/jrm.2020.09844

    Abstract Biopolymer-bound Soil Composites (BSC), are a novel bio-based construction material class, produced through the mixture and desiccation of biopolymers with inorganic aggregates with applications in soil stabilization, brick creation and in situ construction on Earth and space. This paper introduces a mixture design methodology to produce maximum strength for a given soil-biopolymer combination. Twenty protein and sand mix designs were investigated, with varying amounts of biopolymer solution and compaction regimes during manufacture. The ultimate compressive strength, density, and shrinkage of BSC samples are reported. It is observed that the compressive strength of BSC materials increases proportional to tighter particle packing… More >

  • Open Access

    ARTICLE

    Experimental Research on the Physical and Mechanical Properties of Concrete with Recycled Plastic Aggregates

    Haikuan Wu1,2, Changwu Liu1,2,*, Song Shi1,2, Kangliang Chen1,2

    Journal of Renewable Materials, Vol.8, No.7, pp. 727-738, 2020, DOI:10.32604/jrm.2020.09589

    Abstract In order to study the effect of recycled plastic particles on the physical and mechanical properties of concrete, recycled plastic concrete with 0, 3%, 5% and 7% content (by weight) was designed. The compressive strength, splitting tensile strength and the change of mass caused by water absorption during curing were measured. The results show that the strength of concrete is increased by adding recycled plastic into concrete. Among them, the compressive strength and the splitting tensile strength of concrete is the best when the plastic content is 5%. With the increase of plastic content, the development speed of early strength… More >

Displaying 31-40 on page 4 of 47. Per Page