Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (57)
  • Open Access



    Albio D. Gutierreza,*, Hayri Sezerb, Jose L. Ramirezc

    Frontiers in Heat and Mass Transfer, Vol.18, No.1, pp. 1-12, 2022, DOI:10.5098/hmt.18.4

    Abstract This paper presents a computational model along with a thermal comfort criterion aimed at assisting the design of operating rooms (ORs) from the perspective of meeting suitable flow patterns and thermal comfort conditions for the occupants. The computational model is based on the finite volume method (FVM) to describe the air inside ORs along with the human thermoregulation model implemented in virtual mannequins for thermal comfort. The air model considers turbulent fluid motion, species transport and the conservation of energy, including thermal radiation. The human thermoregulation model incorporates two interacting systems of thermoregulation. Namely, the passive system and the active… More >

  • Open Access


    Preliminary Evaluation of Hemodynamic Effects of Fontan Palliation on Renal Artery Using Computational Fluid Dynamics

    Jinlong Liu1,2,#, Jing Shi3,#, Weiru Luo1, Zhirong Tong1,2, Lefei Yang3, Peixuan Sun3, Tianyi Li3, Jun Du3,*, Qian Wang3,*

    Congenital Heart Disease, Vol.18, No.1, pp. 41-55, 2023, DOI:10.32604/chd.2023.025005

    Abstract Background: The assessment of renal function is important to the prognosis of patients needing Fontan palliation due to the reconstructed compromised circulation. To know the relationship between the kidney perfusion and hemodynamic characteristics during surgical design could reduce the risk of acute kidney injury (AKI) and the postoperative complications. However, the issue is still unsolved because the current clinical evaluation methods are unable to predict the hemodynamic changes in renal artery (RA). Methods: We reconstructed a three-dimensional (3D) vascular model of a patient requiring Fontan palliation. The technique of computational fluid dynamics (CFD) was utilized to explore the changes of… More > Graphic Abstract

    Preliminary Evaluation of Hemodynamic Effects of Fontan Palliation on Renal Artery Using Computational Fluid Dynamics

  • Open Access


    Passive Control of Base Pressure in a Converging-Diverging Nozzle with Area Ratio 2.56 at Mach 1.8

    Nur Husnina Muhamad Zuraidi1, Sher Afghan Khan1,*, Abdul Aabid2,*, Muneer Baig2, Istiyaq Mudassir Shaiq3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 807-829, 2023, DOI:10.32604/fdmp.2023.023246

    Abstract In this study, a duct is considered and special attention is paid to a passive method for the control of the base pressure relying on the use of a cavity with a variable aspect ratio. The Mach number considered is 1.8, and the area ratio of the duct is 2.56. In particular, two cavities are examined, their sizes being 3:3 and 6:3. The used L/D spans the interval 1–10 while the NPRs (nozzle pressure ratio) range from 2 to 9. The results show that the control becomes effective once the nozzles are correctly expanded or under-expanded. The pressure contours at… More >

  • Open Access


    Analysis of the Thermal Performance of External Insulation in Prefabricated Buildings Using Computational Fluid Dynamics

    Ang Wang1,*, Hui Wang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1293-1306, 2022, DOI:10.32604/fdmp.2022.018561

    Abstract This paper investigates the thermal performance of prefabricated exterior walls using the Computational Fluid Dynamics method to reduce energy consumption. The thermal performance of the prefabricated exterior wall was numerically simulated using the software ANSYS Fluent. The composite wall containing the cavity is taken as the research object in this paper after analysis. The simulation suggests that when the cavity thickness is 20 mm and 30 mm, the heat transfer coefficient of the air-sandwich wall is 1.3 and 1.29, respectively. Therefore, the optimal width of the cavity is 20 mm, and the most suitable material is the aerated concrete block.… More >

  • Open Access


    Intelligent Control of Cabin Environment Using Computational Fluid Dynamics for Intelligent Manufacturing

    Xi Wang*, Guangping Zeng

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 563-576, 2022, DOI:10.32604/fdmp.2022.017884

    Abstract An efficient and versatile intelligent algorithm is developed for the control of the cabin environment of wind power generators. The method can be used to monitor and solve wind power generation problems at the same time. It also provides several advantages with respect to other traditional methods which imply significant workload and maintenance personnel. The functional requirements of the intelligent control system are analyzed, and a control algorithm for the stepping motor is selected and evaluated. Through the comparative analysis of the active power and internal temperature curve for three kinds of output power of the prototype, it is proved… More >

  • Open Access


    How Do Water Filled Traffic Barriers Shake a Suspension Bridge?

    Guanni Qu1,#, Tianai Yue2,#,*, Xiaoyu Zhang3, Shibiao Wei3

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 591-608, 2022, DOI:10.32604/fdmp.2022.017776

    Abstract The present study stems from the realization that the general problem relating to the analysis of wind-induced vibrations in suspension bridges still requires significant attention. Sidewalk railings, overhaul tracks, and deflectors are known to largely affect such dynamics. Here, the influence of a row of water-filled traffic barriers on the response of a sample suspension bridge is investigated numerically. It is shown that the existence of water barriers causes flow separation and non-negligible vortices with respect to the condition with no water barriers. The vortex shedding frequency at the far end is around 41.30 Hz, relatively close to the real… More >

  • Open Access


    Review of Research Advances in CFD Techniques for the Simulation of Urban Wind Environments

    Pengfei Ju1,2,*, Mingrui Li3,4, Jingying Wang3,4

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 449-462, 2022, DOI:10.32604/fdmp.2022.018035


    Computational fluid dynamics (CFD) has become the main method for the prediction of the properties of the external wind environment in cities and other urban contexts. A review is presented of the existing literature in terms of boundary conditions, building models, computational domains, computational grids, and turbulence models. Some specific issues, such as the accuracy/computational cost ratio and the exploitation of existing empirical correlations, are also examined.

    More >

  • Open Access


    Numerical Simulation of Proppant Dynamics in a Rough Inclined Fracture

    Tiankui Guo1,*, Zhilin Luo1, Shanbo Mou2, Ming Chen1, Yuanzhi Gong3, Jianhua Qin4

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 431-447, 2022, DOI:10.32604/fdmp.2022.017861

    Abstract Although the dynamics of proppant (small ceramic balls used to prevent opened fractures from closing on the release of pressure) have been the subject of several numerical studies over recent years, large-scale inclined fractures exist in unconventional reservoirs for which relevant information is still missing. In the present study, this problem is investigated numerically considering the influence of several relevant factors such as the fracture roughness, inclination, the proppant particle size, the injection rate and the fluid viscosity. The results show that a rough wall enables the proppant to travel farther and cover larger areas. The inclination angle has little… More >

  • Open Access


    Optimization of the Internal Circulating Fluidized Bed Using Computational Fluid Dynamics Technology

    Xiangxi Du1,*, Muyun Liu2, Yanhua Sun1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 303-312, 2022, DOI:10.32604/fdmp.2022.016242

    Abstract The computational fluid dynamics (CFD) technology is analyzed and calculated utilizing the turbulence model and multiphase flow model to explore the performance of internal circulating fluidized beds (ICFB) based on CFD. The three-dimensional simulation method can study the hydrodynamic properties of the ICFB, and the performance of the fluidized bed is optimized. The fluidization performance of the ICFB is improved through the experimental study of the cross-shaped baffle. Then, through the cross-shaped baffle and funnel-shaped baffle placement, the fluidized bed reaches a coupled optimization. The results show that CFD simulation technology can effectively improve the mass transfer efficiency and performance… More >

  • Open Access


    Simplified Calculation of Flow Resistance of Suspension Bridge Main Cable Dehumidification System

    Zhiyuan Tu1, Fusheng Peng1,*, Zijie Wei1, Guo Qian2, Jie Wang1, Chunjie Huang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1195-1211, 2021, DOI:10.32604/fdmp.2021.011753

    Abstract To calculate the flow resistance of a main cable dehumidification system, this study considers the air flow in the main cable as the flow in a porous medium, and adopts the Hagen–Poiseuille equation by using average hydraulic radius and capillary bundle models. A mathematical derivation is combined with an experimental study to obtain a semi-empirical flow resistance formula. Additionally, Fluent software is used to simulate the flow resistance across the main cable relative to the experimental values. Based on the actual measured results for a Yangtze River bridge, this study verifies the semi-empirical formula, and indicates that it can be… More >

Displaying 1-10 on page 1 of 57. Per Page  

Share Link