Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (147)
  • Open Access

    ARTICLE

    Optimized Power Factor Correction for High Speed Switched Reluctance Motor

    R. S. Preethishri*, J. Anitha Roseline, K. Murugesan, M. Senthil Kumaran

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 997-1014, 2023, DOI:10.32604/iasc.2023.025510 - 06 June 2022

    Abstract The Power Factor Correction (PFC) in Switched Reluctance (SR) motor is discussed in this article. The SR motors are applicable for multiple applications like electric vehicles, wind mills, machineries etc. The doubly salient structure of SR motor causes the occurrence of torque ripples, which affects the power factor of the motor. To improve the power quality, the power factor has to be corrected and the ripples have to be minimized. In order to achieve these objectives, a novel power factor correction (PFC) method is proposed in this work. Here, the conventional Diode Bridge Rectifier (DBR)… More >

  • Open Access

    ARTICLE

    Design and Analysis of Novel Three-Phase PFC for IM Drives

    V. Kavitha1,*, K. Subramanian2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 231-241, 2023, DOI:10.32604/iasc.2023.024257 - 06 June 2022

    Abstract Induction motor drives (IMDs) can achieve high performance levels comparable to dc motor drives. A major problem in getting high dynamic performance in an IMD is the coupling between the flux and torque producing components of stator current. This is successfully overcome in FOC (Field-Oriented Control) IM, making it to the industry standard control. The performance of an IMD with an improved power quality converter at the front end is presented in this study. In the IMD, boost converter is employed to reduce power quality difficulties at the utility interface. As the boost converter contains… More >

  • Open Access

    ARTICLE

    Machine Learning Controller for DFIG Based Wind Conversion System

    P. Srinivasan1,*, P. Jagatheeswari2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 381-397, 2023, DOI:10.32604/iasc.2023.024179 - 06 June 2022

    Abstract Renewable energy production plays a major role in satisfying electricity demand. Wind power conversion is one of the most popular renewable energy sources compared to other sources. Wind energy conversion has two major types of generators such as the Permanent Magnet Synchronous Generator (PMSG) and the Doubly Fed Induction Generator (DFIG). The maximum power tracking algorithm is a crucial controller, a wind energy conversion system for generating maximum power in different wind speed conditions. In this article, the DFIG wind energy conversion system was developed in Matrix Laboratory (MATLAB) and designed a machine learning (ML) More >

  • Open Access

    ARTICLE

    Optimization of Adaptive Fuzzy Controller for Maximum Power Point Tracking Using Whale Algorithm

    Mehrdad Ahmadi Kamarposhti1,*, Hassan Shokouhandeh2, Ilhami Colak3, Kei Eguchi4

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5041-5061, 2022, DOI:10.32604/cmc.2022.031583 - 28 July 2022

    Abstract The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector. The capability of online fuzzy tracking systems is maximum power, resistance to radiation and temperature changes, and no need for external sensors to measure radiation intensity and temperature. However, the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing. The controller used in the maximum power point… More >

  • Open Access

    ARTICLE

    Optimal FOPID Controllers for LFC Including Renewables by Bald Eagle Optimizer

    Ahmed M. Agwa1, Mohamed Abdeen2, Shaaban M. Shaaban1,3,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5525-5541, 2022, DOI:10.32604/cmc.2022.031580 - 28 July 2022

    Abstract In this study, a bald eagle optimizer (BEO) is used to get optimal parameters of the fractional-order proportional–integral–derivative (FOPID) controller for load frequency control (LFC). Since BEO takes only a very short time in finding the optimal solution, it is selected for designing the FOPID controller that improves the system stability and maintains the frequency within a satisfactory range at different loads. Simulations and demonstrations are carried out using MATLAB-R2020b. The performance of the BEO-FOPID controller is evaluated using a two-zone interlinked power system at different loads and under uncertainty of wind and solar energies.… More >

  • Open Access

    ARTICLE

    Design and Implementation of a State-feedback Controller Using LQR Technique

    Aamir Shahzad1,*, Shadi Munshi2, Sufyan Azam2, Muhammad Nasir Khan3

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2897-2911, 2022, DOI:10.32604/cmc.2022.028441 - 16 June 2022

    Abstract The main objective of this research is to design a state-feedback controller for the rotary inverted pendulum module utilizing the linear quadratic regulator (LQR) technique. The controller maintains the pendulum in the inverted (upright) position and is robust enough to reject external disturbance to maintain its stability. The research work involves three major contributions: mathematical modeling, simulation, and real-time implementation. To design a controller, mathematical modeling has been done by employing the Newton-Euler, Lagrange method. The resulting model was nonlinear so linearization was required, which has been done around a working point. For the estimation of the controller More >

  • Open Access

    ARTICLE

    Bilateral Contract for Load Frequency and Renewable Energy Sources Using Advanced Controller

    Krishan Arora1, Gyanendra Prasad Joshi2, Mahmoud Ragab3,4,5,*, Muhyaddin Rawa6,7,8, Ahmad H. Milyani6,7, Romany F. Mansour9, Eunmok Yang10

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3165-3180, 2022, DOI:10.32604/cmc.2022.026966 - 16 June 2022

    Abstract Reestablishment in power system brings in significant transformation in the power sector by extinguishing the possession of sound consolidated assistance. However, the collaboration of various manufacturing agencies, autonomous power manufacturers, and buyers have created complex installation processes. The regular active load and inefficiency of best measures among varied associates is a huge hazard. Any sudden load deviation will give rise to immediate amendment in frequency and tie-line power errors. It is essential to deal with every zone’s frequency and tie-line power within permitted confines followed by fluctuations within the load. Therefore, it can be proficient… More >

  • Open Access

    ARTICLE

    Dynamic Threshold-Based Approach to Detect Low-Rate DDoS Attacks on Software-Defined Networking Controller

    Mohammad Adnan Aladaileh, Mohammed Anbar*, Iznan H. Hasbullah, Abdullah Ahmed Bahashwan, Shadi Al-Sarawn

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1403-1416, 2022, DOI:10.32604/cmc.2022.029369 - 18 May 2022

    Abstract The emergence of a new network architecture, known as Software Defined Networking (SDN), in the last two decades has overcome some drawbacks of traditional networks in terms of performance, scalability, reliability, security, and network management. However, the SDN is vulnerable to security threats that target its controller, such as low-rate Distributed Denial of Service (DDoS) attacks, The low-rate DDoS attack is one of the most prevalent attacks that poses a severe threat to SDN network security because the controller is a vital architecture component. Therefore, there is an urgent need to propose a detection approach… More >

  • Open Access

    ARTICLE

    Modeling and Experimental Verification of Electric Vehicles Off-Grid Photovoltaic Powered Charging Station

    Essam Hendawi1,*, Sattam Al Otaibi1, Sherif Zaid2,3,4, Ayman Hoballah1, Salah K. ElSayed1, Nagy I. Elkalashy1, Yasser Ahmed1

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1009-1025, 2022, DOI:10.32604/csse.2022.022927 - 09 May 2022

    Abstract With the increasing development of EVs, the energy demand from the conventional utility grid increases in proportion. On the other hand, photovoltaic (PV) energy sources can overcome several problems when charging EVs from the utility grid especially in remote areas. This paper presents an effective photovoltaic stand-alone charging station for EV applications. The proposed charging station incorporates PV array, a lithium-ion battery representing the EV battery, and a lead-acid battery representing the energy storage system (ESS). A bidirectional DC-DC converter is employed for charging/discharging the ESS and a unidirectional DC-DC converter is utilized for charging… More >

  • Open Access

    ARTICLE

    A Novel Controller for Microgrid Interactive Hybrid Renewable Power Sources

    P. Kavitha*, P. Subha Karuvelam

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 821-836, 2022, DOI:10.32604/iasc.2022.023035 - 03 May 2022

    Abstract In this paper, a self-sufficient electric power generation is proposed by using hybrid renewable sources like solar and wind turbines to favor a smart and green environment. This distributed generation unit is connected to the grid through an 3Φ inverter. The power drawn from the hybrid unit is stored in the batteries to transfer power during the non-availability of power sources. This standalone power conversion and storage system are developed by using power electronic converters and controllers to ensure balanced power flow operation. A PI (Proportional Integral) controller is utilized for generating the PWM (Pulse… More >

Displaying 61-70 on page 7 of 147. Per Page