Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (328)
  • Open Access

    ARTICLE

    HEAT TRANSFER IN A MICROTUBE OR MICROCHANNEL WITH PROTRUSIONS

    Muhammad M. Rahman*, Phaninder Injeti

    Frontiers in Heat and Mass Transfer, Vol.2, No.1, pp. 1-9, 2011, DOI:10.5098/hmt.v2.1.3003

    Abstract This paper presents the effects of protrusions on heat transfer in a microtube and in a two-dimensional microchannel of finite wall thickness. The effects of protrusion shape, size, and number were investigated. Calculations were done for incompressible flow of a Newtonian fluid with developing momentum and thermal boundary layers under uniform and discrete heating conditions. It was found that the local Nusselt number near a protrusion changes significantly with the variations of Reynolds number, height, width, and distance between protrusions, and the distribution of discrete heat sources. The results presented in the paper demonstrate that protrusions can be used advantageously… More >

  • Open Access

    ARTICLE

    HEAT GENERATION EFFECTS ON NATURAL CONVECTION IN POROUS CAVITY WITH DIFFERENT WALLS TEMPERATURE

    Majid Tahmasebi Kohyania, Behzad Ghasemia, Ahmad Pasandideh Fardb,*

    Frontiers in Heat and Mass Transfer, Vol.3, No.2, pp. 1-6, 2012, DOI:10.5098/hmt.v3.2.3008

    Abstract Natural convection heat transfer in a square cavity with a porous medium subjected to a uniform energy generation per unit volume is studied numerically in this paper. Temperature of the vertical walls is not equal but it is constant . There are two effective parameters in this condition that appear in the nondimensionalized equations and they are functions of temperature difference between hot and cold walls and energy generation in the porous medium. Nondimensionalized governing equations are obtained based on the Darcy model. a control volume approach is used for solving these equations. The effects of the variation of two… More >

  • Open Access

    ARTICLE

    THERMO-HYDRAULICS OF TUBE BANKS WITH POROUS INTERCONNECTORS USING WATER AS COOLING FLUID

    P. V. Ramana, Arunn Narasimhan*, Dhiman Chatterjee

    Frontiers in Heat and Mass Transfer, Vol.3, No.2, pp. 1-6, 2012, DOI:10.5098/hmt.v3.2.3007

    Abstract The present experimental study investigates the effect of tube-to-tube porous interconnectors on the pressure drop and heat transfer (Nu) of tube banks. A copper wire mesh porous medium connects successive tubes of the in-line and staggered arrangement of six rows of tubes. The tubes are subjected to constant and uniform heat flux and cooled by forced convection using water as a cooling fluid in the laminar flow range (100 < ReDuct < 625). The inline configuration with the tube-to-tube porous medium inter-connectors provides marginal enhancement of heat transfer and 12% reduction in the pressure drop penalty respectively, compared to tube… More >

  • Open Access

    ARTICLE

    DOUBLE DIFFUSION EFFECTS ON CONVECTION IN FLOW ON VERTICAL PLATE IMBEDDED IN POROUS MEDIA

    Z. Aouachriaa,*, F. Rouichia, D. Haddadb

    Frontiers in Heat and Mass Transfer, Vol.3, No.2, pp. 1-6, 2012, DOI:10.5098/hmt.v3.2.3004

    Abstract Natural convection flow past a vertical porous plate in a porous medium is studied numerically, by taking into account the Dufour and Soret effects. The similarity equations of the problem considered are obtained by using usual similarity technique. This system of ordinary differential equations, which are solved numerically by using the Nachtsheim -Swigerst hooting iteration technique together with a sixth order Runge-Kutta integrations scheme. The results show that Soret and Dufour effects do not appreciably influence the velocity, temperature and concentration fields, but rather only tend to increase the mass and energy flux due to the added contributions. More >

  • Open Access

    ARTICLE

    EXPERIMENTAL INVESTIGATION OF HEAT LOSS FROM HEMISPHERICAL SOLAR CONCENTRATOR RECEIVER

    Milind S. Patila,*, Ramchandra S. Jahagirdarb, Eknath R. Deorea,†

    Frontiers in Heat and Mass Transfer, Vol.3, No.3, pp. 1-5, 2012, DOI:10.5098/hmt.v3.3.3008

    Abstract Convection heat loss inevitably occurs in receivers of high concentrating solar concentrators. All the concentrators are need to be tack during the operation and hence the position of the receiver is changing continually. The angle of the receiver axis will then play an important role in the heat loss. Few researches were reported for the hemispherical cavity receivers numerically. The paper presented here is an experimental investigation natural convection heat loss from hemispherical cavity receiver. Cavity receiver of diameter 540 mm was tested. It is observed that the heat loss was minimum for 90° and maximum for 0°. More >

  • Open Access

    ARTICLE

    CHEMICAL REACTION AND RADIATION EFFECTS ON NATURAL CONVECTION IN POROUS MEDIUM SATURATED WITH POWER-LAW FLUID

    D. Srinivasacharya, G. Swamy Reddy

    Frontiers in Heat and Mass Transfer, Vol.3, No.4, pp. 1-9, 2012, DOI:10.5098/hmt.v3.4.3008

    Abstract The natural convection heat and mass transfer along a vertical plate embedded in non-Newtonian Power-law fluid saturated porous medium in the presence of first order chemical reaction and radiation is studied. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations. The resulting equations are solved numerically using Shooting method. The effect of radiation parameters and chemical reaction parameter and power law index on non-dimensional velocity, temperature and concentration fields are discussed. The variation of different parameters on heat and mass transfer rates is presented in tabular form. More >

  • Open Access

    ARTICLE

    Natural Convection and Irreversibility of Nanofluid Due to Inclined Magnetohydrodynamics (MHD) Filled in a Cavity with Y-Shape Heated Fin: FEM Computational Configuration

    Afraz Hussain Majeed1, Rashid Mahmood2, Sayed M. Eldin3, Imran Saddique4,5,*, S. Saleem6, Muhammad Jawad7

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1505-1519, 2024, DOI:10.32604/cmes.2023.030255

    Abstract This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin and magnetic field. The temperature is constant on the Y-shaped fin, insulating the top wall while the remaining walls remain cold. All walls are subject to impermeability and non-slip conditions. The mathematical modeling of the problem is demonstrated by the continuity, momentum, and energy equations incorporating the inclined magnetic field. For elucidating the flow characteristics Finite Element Method (FEM) is implemented using stable FE pair. A hybrid fine mesh is used for discretizing the domain. Velocity and thermal plots concerning parameters are… More >

  • Open Access

    ARTICLE

    Influence of Brownian Motion, Thermophoresis and Magnetic Effects on a Fluid Containing Nanoparticles Flowing over a Stretchable Cylinder

    Aaqib Majeed1,*, Ahmad Zeeshan2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 525-536, 2024, DOI:10.32604/fdmp.2023.028716

    Abstract The influence of Brownian motion and thermophoresis on a fluid containing nanoparticles flowing over a stretchable cylinder is examined. The classical Navier-Stokes equations are considered in a porous frame. In addition, the Lorentz force is taken into account. The controlling coupled nonlinear partial differential equations are transformed into a system of first order ordinary differential equations by means of a similarity transformation. The resulting system of equations is solved by employing a shooting approach properly implemented in MATLAB. The evolution of the boundary layer and the growing velocity is shown graphically together with the related profiles of concentration and temperature.… More >

  • Open Access

    ARTICLE

    LAMINAR NATURAL CONVECTION STUDY IN A QUADRANTAL CAVITY USING HEATER ON ADJACENT WALLS

    Dipak Sen*, Probir Kumar Bose, Rajsekhar Panua, Ajoy Kumar Das, Pulak Sen

    Frontiers in Heat and Mass Transfer, Vol.4, No.1, pp. 1-7, 2013, DOI:10.5098/hmt.v4.1.3005

    Abstract A numerical analysis of laminar natural convection in a quadrantal cavity filled with water having variable length heaters attached on the adjacent walls have been made to examine heat and fluid flow. Numerical solutions are obtained using a commercial computational fluid dynamics package, FLUENT, using the finite volume method. Effects of the Rayleigh number, Ra, on the Nusselt number, Nu, as well as velocity and temperature fields are investigated for the range of Ra from 103 to 107 . Computations were carried out for the non-dimensional heater lengths on the vertical wall (m=0.2, 0.4 and 0.6) and horizontal wall (n=0.2,… More >

  • Open Access

    ARTICLE

    ANALYSIS OF CHAOTIC NATURAL CONVECTION IN A TALL RECTANGULAR CAVITY WITH NON-ISOTHERMAL WALLS

    Heather Dillona , Ashley Emeryb,† , Ann Mescherb

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-9, 2013, DOI:10.5098/hmt.v4.2.3004

    Abstract A computational model is presented that extends prior work on unsteady natural convection in a tall rectangular cavity with aspect ratio 10 and applies Proper Orthogonal Decomposition to the results. The solution to the weakly compressible Navier-Stokes equation is computed for a range of Rayleigh numbers between 2 × 107 and 2.2 × 108 with Prandtl number 0.71. A detailed spectral analysis shows dynamic system behavior beyond the Hopf bifurcation that was not previously observed. The wider Rayleigh range reveals new dynamic system behavior for the rectangular geometry, specifically a return to a stable oscillatory behavior that was not predicted… More >

Displaying 11-20 on page 2 of 328. Per Page