Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (94)
  • Open Access

    ARTICLE

    A Recommendation System Based on Fusing Boosting Model and DNN Model

    Aziguli Wulam1,2, Yingshuai Wang1,2, Dezheng Zhang1,2,*, Jingyue Sang3, Alan Yang4

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 1003-1013, 2019, DOI:10.32604/cmc.2019.07704

    Abstract In recent years, the models combining traditional machine learning with the deep learning are applied in many commodity recommendation practices. It has been proved better performance by the means of the neural network. Feature engineering has been the key to the success of many click rate estimation model. As we know, neural networks are able to extract high-order features automatically, and traditional linear models are able to extract low-order features. However, they are not necessarily efficient in learning all types of features. In traditional machine learning, gradient boosting decision tree is a typical representative of More >

  • Open Access

    ARTICLE

    R2N: A Novel Deep Learning Architecture for Rain Removal from Single Image

    Yecai Guo1,2,*, Chen Li1,2, Qi Liu3

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 829-843, 2019, DOI:10.32604/cmc.2019.03729

    Abstract Visual degradation of captured images caused by rainy streaks under rainy weather can adversely affect the performance of many open-air vision systems. Hence, it is necessary to address the problem of eliminating rain streaks from the individual rainy image. In this work, a deep convolution neural network (CNN) based method is introduced, called Rain-Removal Net (R2N), to solve the single image de-raining issue. Firstly, we decomposed the rainy image into its high-frequency detail layer and low-frequency base layer. Then, we used the high-frequency detail layer to input the carefully designed CNN architecture to learn the mapping More >

  • Open Access

    ARTICLE

    Image Recognition of Breast Tumor Proliferation Level Based on Convolution Neural Network

    Junhao Yang1, Chunxiao Chen1,*, Qingyang Zang1, Jianfei Li1

    Molecular & Cellular Biomechanics, Vol.15, No.4, pp. 203-214, 2018, DOI:10.32604/mcb.2018.03824

    Abstract Pathological slide is increasingly applied in the diagnosis of breast tumors despite the issues of large amount of data, slow viewing and high subjectivity. To overcome these problems, a micrograph recognition method based on convolutional neural network is proposed for pathological slide of breast tumor. Combined with multi-channel threshold and watershed segmentation, a sample database including single cell, adhesive cell and invalid cell was established. Then, the convolution neural network with six layers is constructed, which has ability to classify the stained breast tumor cells with accuracy of more than 90%, and evaluate the proliferation More >

  • Open Access

    ARTICLE

    Tumor Cell Identification in Ki-67 Images on Deep Learning

    Ruihan Zhang1,2, Junhao Yang1, Chunxiao Chen1,*

    Molecular & Cellular Biomechanics, Vol.15, No.3, pp. 177-187, 2018, DOI:10.3970/mcb.2018.04292

    Abstract The proportion of cells staining for the nuclear antigen Ki-67 is an important predictive indicator for assessment of tumor cell proliferation and growth in routine pathological investigation. Instead of traditional scoring methods based on the experience of a trained laboratory scientist, deep learning approach can be automatically used to analyze the expression of Ki-67 as well. Deep learning based on convolutional neural networks (CNN) for image classification and single shot multibox detector (SSD) for object detection are used to investigate the expression of Ki-67 for assessment of biopsies from patients with breast cancer in this More >

Displaying 91-100 on page 10 of 94. Per Page